Resorbable Calcium Phosphate Ceramics for Bone Graft.
用于骨移植的可吸收磷酸钙陶瓷。
基本信息
- 批准号:7694825
- 负责人:
- 金额:$ 3.38万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2008
- 资助国家:美国
- 起止时间:2008-09-30 至 2012-02-29
- 项目状态:已结题
- 来源:
- 关键词:Autologous TransplantationBehaviorBiodegradationBiologicalBone GrowthBone RegenerationBone SubstitutesBone TissueBone TransplantationBone remodelingCellsCeramicsCerealsCharacteristicsChemicalsChemistryClinicalDataDefectDevelopmentElementsFaceGoalsHarvestHealedHumanImplantIn VitroKineticsKnowledgeLeadLengthMagnesiumMalignant Bone NeoplasmMechanicsModelingOperative Surgical ProceduresOryctolagus cuniculusOsteoblastsOsteoclastsOsteoporosisOxidesPhysiologic calcificationPorosityProcessPropertyPublic Health Applications ResearchRangeRateRattusResearchResearch Project GrantsSamplingSeriesSiliconSiteSpinalSpinal FusionStrontiumStructureTestingTimeTissue EngineeringTrace ElementsTransplanted tissueZincbasebiomaterial compatibilitybonebone cellbone healingcalcium phosphatecell growthcraniomaxillofacialdesigndesirehealingin vivonanoparticlenanopowdernanoscalenovelphysical propertyreconstructionrepairedscaffoldsizesuccess
项目摘要
DESCRIPTION (provided by applicant): Calcium phosphate (CaP) based ceramics are used in hard tissue engineering because of their excellent biocompatibility. There is a need for the development of biodegradable ceramic materials with controlled degradation kinetics that will act as a scaffold and support bone remodeling. Our long range goal is to elucidate strength loss mechanism in CaP based material and scaffold to develop bone graft for specific application. Fundamental information on controlled degradation behavior of CaP based materials to identify optimal material composition can help us design and tailor resorbable tissue engineered bone replacement based on application needs. The objective of this research is to test our central hypothesis, which is chemistry and microstructure in CaP based ceramics can modify strength loss in these materials. Our preliminary data indicate that a minimum amount of trace elements (dopants) can have significant effects on physical and mechanical properties of CaPs. Cell-materials interactions can also be influenced by the presence of trace elements. The specific aims are 1) To investigate effects of nanoscale CaP with three different Ca to P ratios, 1.25:1, 1.33:1 and 1.5:1, through synthesis, processing, characterization and in vitro and in vivo bone cell-materials interactions. 2) To determine the effects of four dopants, Zinc, Magnesium, Silicon, and Strontium oxides in single and multi-element composition, along with three CaP ceramics with Ca:P = 1.25:1, 1.33:1 and 1.5:1 on in vitro and in vivo resorption. 3) To develop 3D interconnected tailored porosity CaP structures using rapid prototyping, with an average 300 microns pore size, and, 30 and 60 volume % porosity and verify the influence of porosity on their properties and study in vitro and in vivo interactions. In order to accomplish these aims, we will conduct a series of studies including synthesis of nanoscale CaPs with single and multi element dopants, characterize their chemical, physical and mechanical properties, and in vitro and in vivo strength loss behavior in rat and rabbit models. It is envisioned that results from the proposed study will lead to the development of CaPs with tailored degradation kinetics that can be used in spinal fusion, maxillo- and cranio-facial implants and small scale bone defect applications.
PUBLIC HEALTH RELEVANCE Resorbable Calcium Phosphate Ceramics for Bone Graft
Calcium phosphate (CaP) based ceramics are used in hard tissue engineering because of their excellent biocompatibility. The objective of this research is to test our central hypothesis, which is chemistry and microstructure in Calcium phosphate (CaP) based ceramics can modify strength loss in these materials. It is envisioned that results from the proposed study will lead to the development of CaPs with tailored degradation kinetics that can be used in spinal fusion, maxillo- and cranio-facial implants and small scale bone defect applications.
描述(由申请人提供):基于磷酸钙(CAP)的陶瓷由于其出色的生物相容性而用于硬组织工程中。需要开发具有控制降解动力学的可生物降解陶瓷材料,这些材料将充当脚手架并支持骨骼重塑。我们的远距离目标是阐明基于CAP的材料和支架中的强度损失机制,以开发用于特定应用的骨移植物。基于CAP的材料的受控降解行为以识别最佳材料组成的基本信息可以帮助我们根据应用需求设计和量身定制可吸收组织工程的骨骼。这项研究的目的是测试我们的中心假设,即基于CAP的陶瓷中的化学和微观结构可以改变这些材料的强度损失。我们的初步数据表明,最小量的微量元素(掺杂剂)可能对CAP的物理和机械性能产生重大影响。细胞材料相互作用也可能受到痕量元件的存在。具体目的是1)通过合成,加工,表征,体外和体内骨细胞材料相互作用,研究具有三种不同Ca与P比的纳米级帽的纳米级帽的影响。 2)确定单个和多元素组成中四个掺杂剂,锌,镁,硅和氧化物的影响,以及三个具有CA的帽陶瓷:P = 1.25:1,1.33:1,1.33:1和1.5:1在体外和体内吸收上。 3)使用快速原型开发3D互连量身定制的孔隙率结构,平均300微米的孔径和30和60的体积%孔隙率,并验证孔隙率对其性质和体外和体内相互作用的影响。为了实现这些目标,我们将进行一系列研究,包括与单一和多元素掺杂剂的纳米级帽合成,表征其化学,物理和机械性能,以及大鼠和兔模型中的体外和体外强度损失行为。可以想象,拟议的研究的结果将导致帽子的发展,并具有量身定制的降解动力学,可用于脊柱融合,上颌和颅骨植入物以及小规模的骨缺损应用。
公共卫生相关性可吸收磷酸钙陶瓷骨移植
基于磷酸钙(CAP)的陶瓷由于其出色的生物相容性而用于硬组织工程中。这项研究的目的是测试我们的中心假设,即基于磷酸钙(CAP)陶瓷的化学和微观结构可以改变这些材料中的强度损失。可以想象,拟议的研究的结果将导致帽子的发展,并具有量身定制的降解动力学,可用于脊柱融合,上颌和颅骨植入物以及小规模的骨缺损应用。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
SUSMITA BOSE其他文献
SUSMITA BOSE的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('SUSMITA BOSE', 18)}}的其他基金
3D Printed Calcium Phosphate Scaffolds with Natural Medicinal Compounds for Dental Applications
用于牙科应用的含天然药用化合物的 3D 打印磷酸钙支架
- 批准号:
10220015 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
3D Printed Calcium Phosphate Scaffolds with Natural Medicinal Compounds for Dental Applications
用于牙科应用的含天然药用化合物的 3D 打印磷酸钙支架
- 批准号:
10053065 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
3D Printed Calcium Phosphate Scaffolds with Natural Medicinal Compounds for Dental Applications
用于牙科应用的含天然药用化合物的 3D 打印磷酸钙支架
- 批准号:
10450826 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
3D Printed Calcium Phosphate Scaffolds with Natural Medicinal Compounds for Dental Applications
用于牙科应用的含天然药用化合物的 3D 打印磷酸钙支架
- 批准号:
10665696 - 财政年份:2020
- 资助金额:
$ 3.38万 - 项目类别:
Surface modified metal implants using doped hydroxyapatite
使用掺杂羟基磷灰石进行表面改性的金属植入物
- 批准号:
8789143 - 财政年份:2014
- 资助金额:
$ 3.38万 - 项目类别:
Surface modified metal implants using doped hydroxyapatite
使用掺杂羟基磷灰石进行表面改性的金属植入物
- 批准号:
8919242 - 财政年份:2014
- 资助金额:
$ 3.38万 - 项目类别:
Surface modified metal implants using doped hydroxyapatite
使用掺杂羟基磷灰石进行表面改性的金属植入物
- 批准号:
9313617 - 财政年份:2014
- 资助金额:
$ 3.38万 - 项目类别:
Resorbable Calcium Phosphate Ceramics for Bone Graft.
用于骨移植的可吸收磷酸钙陶瓷。
- 批准号:
7885792 - 财政年份:2008
- 资助金额:
$ 3.38万 - 项目类别:
Resorbable Calcium Phosphate Ceramics for Bone Graft.
用于骨移植的可吸收磷酸钙陶瓷。
- 批准号:
7850265 - 财政年份:2008
- 资助金额:
$ 3.38万 - 项目类别:
Resorbable Calcium Phosphate Ceramics for Bone Graft.
用于骨移植的可吸收磷酸钙陶瓷。
- 批准号:
8020023 - 财政年份:2008
- 资助金额:
$ 3.38万 - 项目类别:
相似国自然基金
表面活性剂影响石油生物降解过程中油水界面介尺度行为机制
- 批准号:22366017
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
可生物降解聚乳酸基材料的阻隔行为及环境降解行为的研究
- 批准号:52173104
- 批准年份:2021
- 资助金额:58.00 万元
- 项目类别:面上项目
可生物降解聚乳酸基材料的阻隔行为及环境降解行为的研究
- 批准号:
- 批准年份:2021
- 资助金额:58 万元
- 项目类别:面上项目
PBAT基生物降解地膜的环境行为与失效老化机理研究
- 批准号:
- 批准年份:2020
- 资助金额:57 万元
- 项目类别:面上项目
人工湿地中酸性药物原位生物降解行为机制及其耦合脱氮机理研究
- 批准号:51809117
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Scaffolds with high oxygen content for mineralization
用于矿化的高氧含量支架
- 批准号:
10298446 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Scaffolds with high oxygen content for mineralization
用于矿化的高氧含量支架
- 批准号:
10474314 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Scaffolds with high oxygen content for mineralization
用于矿化的高氧含量支架
- 批准号:
10672956 - 财政年份:2021
- 资助金额:
$ 3.38万 - 项目类别:
Bioactive, "Self-fitting" Shape Memory Polymer (SMP) Scaffolds to Treat Cranial Bone Defects
生物活性“自贴合”形状记忆聚合物 (SMP) 支架可治疗颅骨缺损
- 批准号:
9240216 - 财政年份:2017
- 资助金额:
$ 3.38万 - 项目类别:
Nanoscale Polymeric Templates for Orthopedic Tissue Engineering
用于骨科组织工程的纳米级聚合物模板
- 批准号:
7990844 - 财政年份:2010
- 资助金额:
$ 3.38万 - 项目类别: