Bioactive, "Self-fitting" Shape Memory Polymer (SMP) Scaffolds to Treat Cranial Bone Defects
生物活性“自贴合”形状记忆聚合物 (SMP) 支架可治疗颅骨缺损
基本信息
- 批准号:9240216
- 负责人:
- 金额:$ 38.8万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-02-01 至 2021-01-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllograftingAnimal ModelAnimalsAreaAutologousAutologous TransplantationBehaviorBiocompatible MaterialsBiodegradationBiomechanicsBody TemperatureBone MarrowBone RegenerationBone SubstitutesBone TissueBone TransplantationCalvariaCell AdhesionCell Differentiation processCell SeparationCellsCephalicClinicalComplicationDefectDepositionDevelopmentDiffusionEngineeringEthersEvaluationExposure toExtracellular MatrixFormulationFutureGoalsGoldHA coatingHarvestHistologicHistologyHumanHybridsHydroxyapatitesImmunohistochemistryImplantIn VitroInfiltrationInvestigationLeadMarrowMelissaMemoryMesenchymalMesenchymal Stem CellsModelingModulusMolecular WeightMorbidity - disease rateNatureNutrientOperative Surgical ProceduresOsseointegrationOsteoblastsOsteogenesisPlastic SurgeonPolymersPorosityPositioning AttributeProceduresPropertyRattusResearchSalineShapesSiliconSiteStem cellsSurfaceTestingThickTissue EngineeringTissuesWorkbasebiomaterial compatibilitybonebone cellbone healingcaprolactonecell motilitycraniofacialcrosslinkdensitydesignhealingin vivoinnovationmechanical behaviormechanical propertiesmembermicroCTmineralizationnanoscaleosteogenicpolydimethylsiloxaneregenerativerepairedscaffoldtissue regeneration
项目摘要
ABSTRACT
Our research goal is the development of a bioactive, “self-fitting” shape memory polymer (SMP)
scaffold to repair confined cranial defects by associated bone marrow-derived mesenchymal stem
cells (BMSCs). Autografts are associated with lengthy harvesting procedures, donor site morbidity as well as
difficulties in shaping and positioning the graft into the defect. Tissue engineering is a promising alternative but
requires a currently unmet need - a biomaterial scaffold which simultaneously provides: (1) the ability to
conformally fit into an irregular defect to enhance osseointegration, (2) bioactivity, (3) osteoinductivity
and (4) highly interconnected pores and controlled biodegradability necessary for cell migration, nutrient
diffusion and neotissue accumulation while avoiding brittle mechanical properties. The significance and
innovation of this approach is a new “self-fitting”, polydopamine-coated SMP scaffold design that achieves all
of these properties. Developed by the PI, the proposed hybrid SMP scaffolds are comprised of an organic
segment [poly(ε-caprolactone), PCL] and an inorganic silicon-containing segment [polydimethylsiloxane,
PDMS or poly(silyl ether), PSE]. The scaffold design meets key functional requirements: (1) Osseo-
integration: The SMP scaffold will be “self-fitting” as a result of its shape memory behavior, enabling
conformal fitting into an irregular defect by brief exposure to warm saline and locking of the new temporary
shape upon cooling to body temperature. (2) Bioactivity and (3) Osteoinductivity: A nanothick, bioactive
polydopamine coating will be applied to the SMP scaffold pore surfaces to support progenitor cell osteogenesis
as well the formation of hydroxyapatite necessary for osseointegration. (4) Interconnected Pores, Controlled
Biodegradability, and Robust Mechanical Properties: The SMP scaffold fabrication strategy enables high
porosities and pore interconnectivity while avoiding brittle mechanical behavior. The rate of scaffold
biodegradation will be controlled by inorganic segment type (i.e. PDMS or PSE) and molecular weight (Mn) (i.e.
crosslink density). The healing potential of SMP scaffolds will be evaluated in a critical size-rat calvarial model
using histological testing, micro-CT and biomechanical testing.
The team is comprised of experts in all key areas of the proposed work. Prof. Melissa Grunlan (PI) will
lead efforts to prepare polydopamine-coated SMP scaffolds and uncoated controls (Aims 1-3). Prof. Mariah
Hahn (Co-I) will lead in vitro tissue engineering studies with rat- and human-BMSCs incorporated into the
scaffolds (Aim 2). Prof. Brian Saunders (Co-I) will implant cell-laden scaffolds into rat calvarial defects (Aim
3). Prof. Michael Moreno will lead efforts to study biomechanical properties of scaffolds, native tissues and
bone-graft constructs (Aims 1-3). Healing will be evaluated by histology/immunohistochemistry (Prof. Roy
Pool and Saunders, Co-Is), micro-CT (Saunders) and biomechanical tests (Moreno). Input will be provided by
two craniofacial plastic surgeons, Drs. Raymond Harshbarger and Kevin Hopkins (consultants).
抽象的
我们的研究目标是开发生物活性的“自配合”形状记忆聚合物(SMP)
通过相关的骨髓衍生的间充质茎来修复狭窄的颅骨缺损的脚手架
细胞(BMSC)。自体移植与冗长的收获程序,供体部位的发病率以及
将草塑形和定位为缺陷的困难。组织工程是一种承诺的替代品,但
需要目前未满足的需求 - 一个仅提供的生物材料支架:(1)
共形适合不规则的缺陷以增强骨整合,(2)生物活性,(3)骨诱导性
(4)细胞迁移所需的高度相互连接的孔和受控的生物降解性,营养素
扩散和新动物的积累,同时避免脆弱的机械性能。意义和
这种方法的创新是一种新的“自构”,多胺涂层的SMP脚手架设计,可实现所有目标
这些属性。由PI开发,提出的杂种SMP支架是有机的
段[poly(ε-辅助酮),PCL]和含无机硅的段[聚二甲基硅氧烷,
PDMS或Poly(Silyl Ether),PSE]。脚手架设计符合关键功能要求:(1)Osseo-
集成:SMP脚手架将由于其形状记忆行为而成为“自构”
短暂暴露于温暖的盐水和新临时性的锁定中,将结合拟合到不规则的缺陷中
冷却至体温后形状。 (2)生物活性和(3)骨诱导:一种纳米,生物活性
聚多巴胺涂层将应用于SMP支架孔表面以支持祖细胞成骨的发生
以及骨整合所需的羟基磷灰石的形成。 (4)互连的孔,受控
生物降解性和鲁棒机械性能:SMP脚手架制造策略可实现高
孔隙率和孔相互连接,同时避免了脆弱的机械行为。脚手架的速度
生物降解将由无机段类型(即PDMS或PSE)和分子量(MN)控制(即
交联密度)。 SMP脚手架的愈合潜力将在临界尺寸鼠标模型中评估
使用组织学测试,微CT和生物力学测试。
该团队已完成拟议工作的所有关键领域的专家。 Melissa Grunlan教授(PI)将
领先的努力来制备涂有多巴胺的SMP支架和未涂层的对照(AIMS 1-3)。玛丽亚教授
Hahn(Co-I)将通过纳入大鼠和人类-BMSC进行体外组织工程研究
脚手架(目标2)。布莱恩·桑德斯(Brian Saunders)教授(CO-I)将植入含细胞的支架植入大鼠钙毛线缺陷中(AIM
3)。迈克尔·莫雷诺(Michael Moreno)教授将领导研究脚手架,天然组织和
骨移植构建体(目标1-3)。愈合将通过组织学/免疫组织化学评估(Roy教授
游泳池和桑德斯,Co-IS),Micro-CT(Saunders)和生物力学测试(Moreno)。输入将由
两名颅面整形外科医生,博士。 Raymond Harshbarger和Kevin Hopkins(顾问)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Melissa Grunlan其他文献
Melissa Grunlan的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Melissa Grunlan', 18)}}的其他基金
Improving Outcomes in Cataract Surgery: Intraocular Lenses (IOLs) Resistant to Cell Growth
改善白内障手术的效果:抗细胞生长的人工晶状体 (IOL)
- 批准号:
10841859 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Improving Outcomes in Cataract Surgery: Intraocular Lenses (IOLs) Resistant to Cell Growth
改善白内障手术的效果:抗细胞生长的人工晶状体 (IOL)
- 批准号:
10573497 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Shape Memory Polymer Scaffolds to Treat Bone Defects in Patients with Alzheimer's Disease
形状记忆聚合物支架治疗阿尔茨海默病患者的骨缺损
- 批准号:
10442203 - 财政年份:2020
- 资助金额:
$ 38.8万 - 项目类别:
Shape Memory Polymer Scaffolds to Treat Bone Defects in Patients with Alzheimer's Disease
形状记忆聚合物支架治疗阿尔茨海默病患者的骨缺损
- 批准号:
10263155 - 财政年份:2020
- 资助金额:
$ 38.8万 - 项目类别:
A Self-Cleaning Membrane to Extend the Lifetime of an Implanted Glucose Biosensor
自清洁膜可延长植入式葡萄糖生物传感器的使用寿命
- 批准号:
8803977 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
Hybrid Inorganic-Organic Hydrogel Scaffolds for Osteochondral Regeneration
用于骨软骨再生的混合无机-有机水凝胶支架
- 批准号:
8285559 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
A Self-Cleaning Membrane to Extend the Lifetime of an Implanted Glucose Biosensor
自清洁膜可延长植入式葡萄糖生物传感器的使用寿命
- 批准号:
8440044 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
Hybrid Inorganic-Organic Hydrogel Scaffolds for Osteochondral Regeneration
用于骨软骨再生的混合无机-有机水凝胶支架
- 批准号:
8449051 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
A Self-Cleaning Membrane to Extend the Lifetime of an Implanted Glucose Biosensor
自清洁膜可延长植入式葡萄糖生物传感器的使用寿命
- 批准号:
8918591 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
A Self-Cleaning Membrane to Extend the Lifetime of an Implanted Glucose Biosensor
自清洁膜可延长植入式葡萄糖生物传感器的使用寿命
- 批准号:
8554303 - 财政年份:2012
- 资助金额:
$ 38.8万 - 项目类别:
相似国自然基金
菌根真菌介导的同种密度制约对亚热带森林群落物种共存的影响
- 批准号:32371600
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
B7H4-LILRB4信号调控B细胞代谢重编程机制在同种抗体产生及防治AMR中的作用
- 批准号:82371792
- 批准年份:2023
- 资助金额:49.00 万元
- 项目类别:面上项目
利用HERV-K(HML-2)多态性探讨不同种族群体的遗传多样性和疾病易感性差异
- 批准号:32200491
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
抗骨髓瘤的新型同种异体嵌合抗原受体T(CAR T)细胞疗法研发
- 批准号:82270210
- 批准年份:2022
- 资助金额:68 万元
- 项目类别:面上项目
利用HERV-K(HML-2)多态性探讨不同种族群体的遗传多样性和疾病易感性差异
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Development of a Novel Bone Adhesive Scaffold to Accelerate Bone Regeneration and Improve Ridge Height Maintenance for the Treatment of Patients with Residual Ridge Resorption
开发新型骨粘合剂支架以加速骨再生并改善牙槽嵴高度维持以治疗残留牙槽嵴吸收的患者
- 批准号:
10603678 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Mapping single nephron glomerular filtration rate with mechanisms of autoregulation in the kidney using magnetic resonance imaging
使用磁共振成像绘制单肾单位肾小球滤过率与肾脏自动调节机制
- 批准号:
10732632 - 财政年份:2023
- 资助金额:
$ 38.8万 - 项目类别:
Role of antigen-specific T cells in immunotherapy-associated acute interstitial nephritis and kidney allograft rejection
抗原特异性 T 细胞在免疫治疗相关急性间质性肾炎和肾同种异体移植排斥中的作用
- 批准号:
10351987 - 财政年份:2022
- 资助金额:
$ 38.8万 - 项目类别:
Resting state MRI to map autoregulation of the kidney
静息态 MRI 绘制肾脏的自动调节图
- 批准号:
10875266 - 财政年份:2022
- 资助金额:
$ 38.8万 - 项目类别:
Drug-gene-nutraceutical interactions of cannabidiol
大麻二酚的药物-基因-营养药物相互作用
- 批准号:
10577835 - 财政年份:2022
- 资助金额:
$ 38.8万 - 项目类别: