Scaffolds with high oxygen content for mineralization

用于矿化的高氧含量支架

基本信息

  • 批准号:
    10672956
  • 负责人:
  • 金额:
    $ 39.61万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-08-01 至 2026-07-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Each year more than 3 million craniofacial injuries occur in the US as a result of trauma, combat-associated lesions, tumor removal, congenital abnormalities, and aging. Although some of these conditions can be addressed by using the patient’s own tissues grafted from another site, this approach leaves the patients susceptible to infections and creates additional trauma. Currently available methods for treatment and restoration of craniofacial defects have limitations with the availability of autografts, immune rejection, high cost, inadequate implant characteristics (oxygen content, mechanical properties, porosity, biocompatibility, degradation, infection risks), and lack of vascularization. Bone repair is crucial to restore patient functionality post-injury. Scaffolds that are easy-to-handle, inexpensive, biodegradable, bioactive, and non-immunogenic with adequate porosity and oxygen content as well as proper mechanical strength are highly sought after for repairing craniofacial defects. The choice of the implant material is of critical importance to facilitate recovery of the injured patients. Recently we developed highly porous scaffolds composed of naturally derived polymers and oxygen-generating components. When combined with cell sources that are compatible with the host, these scaffolds can enhance craniofacial tissue healing. We propose to use materials that are easily accessible, porous, tunable, degradable, and biocompatible. We aim to fabricate hybrid hydrogels that are composed of oxygen-generating depots and gelatin, characterize their physical, chemical, and biological properties as well as studying differentiation of cells and vascularization in these composites. Our preliminary findings suggest that the proposed novel composite hydrogels exhibit significantly improved mechanical properties and indicate a favorable in vivo response by subcutaneous implantation in a rat model as well as full regeneration of critical sized cranial defects. In Aim 1, we will synthesize and characterize oxygen-generating biomaterials with optimized performance and characterize them. In Aim 2, we will assess how the oxygen-generating depots affect cell differentiation and osteogenesis, and develop a vascularized osteogenic model as well as evaluating the functionality of these constructs. In Aim 3, we will implant these composite biomaterials into critical size calvarial defects in vivo to induce bone regeneration. We expect that the integration of oxygen-generating depots into photocrosslinkable hydrogels will result in a material with improved mechanical properties and will promote cell growth, differentiation, biomineralization, and vascularization. These composite biomaterials will be suitable for repair or regeneration of craniomaxillofacial tissues. Because oxygen-generating scaffolds will have outstanding tunability, they are expected to be also useful for applications in other tissues such as cartilage. Porous scaffolds with high oxygen content are highly promising materials for creating functional vascularized tissues, and are expected to improve craniomaxillofacial tissue repair and human health.
抽象的 每年,由于创伤,与战斗相关 病变,清除肿瘤,先天性异常和衰老。尽管其中一些条件可能是 通过使用从另一个部位接枝的患者自身的组织来解决,这种方法使患者 容易感染并造成其他创伤。当前可用的治疗和恢复方法 颅面缺陷的局限性,自体移植,免疫排斥,高成本,不足 植入物特征(氧含量,机械性能,孔隙率,生物相容性,降解,感染 风险),缺乏血管化。骨修复对于恢复伤害后患者功能至关重要。脚手架 具有易于手柄,廉价,可生物降解,生物活性和非免疫原性,具有足够的孔隙率和足够的孔隙。 氧气含量以及适当的机械强度是为修复颅面缺陷而高度搜寻的。 植入物材料的选择对于支持受伤患者的恢复至关重要。最近 我们开发了由天然衍生的聚合物和产生氧的高度多孔脚手架 成分。当与与宿主兼容的细胞源结合使用时,这些支架可以增强 颅面组织愈合。我们建议使用易于访问,多孔,可调,可降解的材料, 和生物相容性。我们的目的是制造由产生氧气的沉积物和 明胶,表征其物理,化学和生物学特性,并研究细胞的分化 和这些复合材料中的血管化。我们的初步发现表明提出的新型复合材料 水凝胶具有显着改善的机械性能,并表明通过 大鼠模型中的皮下植入以及关键大小颅骨缺陷的完全再生。在AIM 1中, 我们将合成并表征具有优化性能的生物材料的生物材料和 特征它们。在AIM 2中,我们将评估产生氧的沉积物如何影响细胞分化和 成骨,并开发出血管化的成骨模型,并评估这些模型 构造。在AIM 3中,我们将将这些复合生物材料植入体内的关键尺寸钙钙缺陷中 诱导骨再生。我们期望将氧气沉积物的整合到可光叠链接中 水凝胶将导致具有改善机械性能的材料,并促进细胞生长, 分化,生物矿化和血管化。这些复合生物材料适合修复或 颅颌面组织的再生。因为产生氧气的脚手架将具有出色的 可可的性能,预计它们在其他时间(例如软骨)的应用也很有用。多孔脚手架 具有高氧含量是产生功能性血管化组织的高度有希望的材料,并且是 预计将改善颅颌面组织修复和人类健康。

项目成果

期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Hydrogel-Impregnated Self-Oxygenating Electrospun Scaffolds for Bone Tissue Engineering.
  • DOI:
    10.3390/bioengineering10070854
  • 发表时间:
    2023-07-19
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
    Augustine, Robin;Nikolopoulos, Vasilios K.;Camci-Unal, Gulden
  • 通讯作者:
    Camci-Unal, Gulden
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Gulden Camci-Unal其他文献

Gulden Camci-Unal的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Gulden Camci-Unal', 18)}}的其他基金

Scaffolds with high oxygen content for mineralization
用于矿化的高氧含量支架
  • 批准号:
    10298446
  • 财政年份:
    2021
  • 资助金额:
    $ 39.61万
  • 项目类别:
Scaffolds with high oxygen content for mineralization
用于矿化的高氧含量支架
  • 批准号:
    10474314
  • 财政年份:
    2021
  • 资助金额:
    $ 39.61万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
  • 批准号:
    10752276
  • 财政年份:
    2024
  • 资助金额:
    $ 39.61万
  • 项目类别:
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
  • 批准号:
    10462257
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
  • 批准号:
    10595404
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
Research Project 2
研究项目2
  • 批准号:
    10403256
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
An Engineered Hydrogel Platform to Improve Neural Organoid Reproducibility for a Multi-Organoid Disease Model of 22q11.2 Deletion Syndrome
一种工程水凝胶平台,可提高 22q11.2 缺失综合征多器官疾病模型的神经类器官再现性
  • 批准号:
    10679749
  • 财政年份:
    2023
  • 资助金额:
    $ 39.61万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了