The Molecular Basis of Cellular Control Mechanisms
细胞控制机制的分子基础
基本信息
- 批准号:7369649
- 负责人:
- 金额:$ 29.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:1996
- 资助国家:美国
- 起止时间:1996-06-01 至 2011-12-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerationAddressAffinityAllosteric RegulationAmino AcidsAntidiabetic DrugsAntimalarialsArtsAspartateAttentionBindingBiologicalBiological ProcessBlood GlucoseCarbamoyl TransferasesCatalysisCellsClassComplexCoupledCrystallographyDataDevelopmentDiabetes MellitusDihydroorotaseEnzymesEvolutionFluorescent ProbesFoundationsFructoseGlucagonGluconeogenesisGoalsInsulinIon ChannelKnowledgeLinkMalignant NeoplasmsMetabolicMetabolic ControlMetabolic PathwayModelingMolecularMonitorMotionMovementNucleic Acid PrecursorsNucleic AcidsNucleotide BiosynthesisObject AttachmentPathway interactionsPharmaceutical PreparationsPositioning AttributeProcessProductionProtein SubunitsProteinsProteomicsPyrimidinePyrimidine NucleotidesPyrimidinesRateRoentgen RaysSignal TransductionSignaling MoleculeStructureSystemTechniquesTimeX-Ray Crystallographyanalogbasecell growthcell growth regulationcooperative studydesigndiabeticenzyme activityinhibitor/antagonistnucleotide metabolismprotein structurereaction ratereceptortransmission process
项目摘要
DESCRIPTION (provided by applicant): The long term objectives of this project are to elucidate the processes involved in the transmission of regulatory signals in biological systems, as a means toward understanding the molecular mechanisms of metabolic control. The understanding of how cells regulate and control all aspects of their function is vital for our ability to intervene when these control mechanisms break down. Almost all modes of signal transduction can be related in some manner to protein conformational changes. For example, the conformational changes induced by the binding of insulin or glucagon to their receptors modulate blood sugar levels, or the large quaternary conformational changes of allosteric enzymes regulate metabolic pathways by altering their catalytic activity. During this project period we will concentrate on three systems involved in signal transmission and allosteric control. The allosteric enzymes aspartate transcarbamoylase (ATCase) and fructose 1,6- bisphosphatase (FBPase) are involved in controlling the rates of the pyrimidine and gluconeogenesis pathways, respectively. Both of these enzymes undergo dramatic conformational changes involving loop motions and movements of entire protein subunits for their function. In addition, we will study the cooperative enzyme, dihydroorotase. This enzyme in pyrimidine nucleotide biosynthesis undergoes loop motions that are coordinated with catalytic activity. A variety of approaches will be used to acquire a molecular-level understanding of how these enzymes function. This project directly addresses fundamental questions of how biological signals are transmitted, in general, and how allosteric regulation controls enzymatic activity, in particular. The specific aims of this application are divided into fundamental and practical components. We will use state of the art techniques involving time-resolved small-angle X-ray scattering and time-resolved X-ray crystallography to capture the details of the effects that signaling molecules have on these enzymatic systems at the atomic level. We will also use strategically placed fluorescent probes in these enzymes, both to monitor the conformational changes and to relate these conformational changes to their function. We will use X-ray crystallography to define each step in the catalytic and allosteric mechanisms of ATCase, including at the moment of bond formation. We will also use these structural data to design highly potent inhibitors of ATCase and FBPase that may be used for the development of new anti-proliferation, anti-malarial and anti-diabetic agents. Understanding of the relationship between conformational changes and allosteric control in these proteins will also help us elucidate the molecular basis of cellular control mechanisms.
The understanding of the atomic level details of the transmission of regulatory signals, which control most biological processes, is critical for our ability to intervene when these controls break down. This application will concentrate on transmission of regulatory signals in enzymes involved in the pathway that produces the precursors of the nucleic acids, and of one of the pathways involved in maintaining blood sugar levels. A molecular level understanding of how these enzymes exert control over their respective pathway will provide a basis for the rational development of new anti-cancer, anti-diabetic and anti-malarial drugs.
描述(由申请人提供):该项目的长期目标是阐明生物系统中调节信号传递的过程,作为理解代谢控制分子机制的一种手段。了解细胞如何调节和控制其功能的各个方面对于我们在这些控制机制崩溃时进行干预的能力至关重要。几乎所有信号转导模式都可以以某种方式与蛋白质构象变化相关。例如,胰岛素或胰高血糖素与其受体结合引起的构象变化调节血糖水平,或者变构酶的大四元构象变化通过改变其催化活性来调节代谢途径。在这个项目期间,我们将专注于涉及信号传输和变构控制的三个系统。变构酶天冬氨酸转氨甲酰酶 (ATCase) 和果糖 1,6-二磷酸酶 (FBPase) 分别参与控制嘧啶和糖异生途径的速率。这两种酶都会经历剧烈的构象变化,涉及环运动和整个蛋白质亚基的运动以实现其功能。此外,我们还将研究协同酶二氢乳清酶。嘧啶核苷酸生物合成中的这种酶经历与催化活性协调的环运动。将使用多种方法来获得对这些酶如何发挥作用的分子水平的了解。该项目直接解决了生物信号如何传递的基本问题,特别是变构调节如何控制酶活性。该应用程序的具体目标分为基本部分和实用部分。我们将使用最先进的技术,包括时间分辨小角度 X 射线散射和时间分辨 X 射线晶体学,以捕获信号分子在原子水平上对这些酶系统产生的影响的细节。我们还将在这些酶中战略性地使用荧光探针,以监测构象变化并将这些构象变化与其功能联系起来。我们将使用 X 射线晶体学来定义 ATCase 催化和变构机制的每个步骤,包括成键时刻。我们还将利用这些结构数据设计高效的 ATCase 和 FBPase 抑制剂,可用于开发新的抗增殖、抗疟疾和抗糖尿病药物。了解这些蛋白质的构象变化和变构控制之间的关系也将有助于我们阐明细胞控制机制的分子基础。
了解控制大多数生物过程的调节信号传输的原子级细节对于我们在这些控制失效时进行干预的能力至关重要。该应用将集中于涉及产生核酸前体的途径以及涉及维持血糖水平的途径之一的酶中调节信号的传递。从分子水平了解这些酶如何控制各自的途径将为合理开发新型抗癌、抗糖尿病和抗疟疾药物提供基础。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
EVAN R KANTROWITZ其他文献
EVAN R KANTROWITZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('EVAN R KANTROWITZ', 18)}}的其他基金
DIRECT OBSERVATION OF THE QUATERNARY CONFORMATIONAL CHANGES INDUCED BY SUBSTRATE
直接观察底物引起的四元构象变化
- 批准号:
8362170 - 财政年份:2011
- 资助金额:
$ 29.54万 - 项目类别:
DIRECT OBSERVATION OF THE QUATERNARY CONFORMATIONAL CHANGES INDUCED BY SUBSTRATE
直接观察底物引起的四元构象变化
- 批准号:
8170121 - 财政年份:2010
- 资助金额:
$ 29.54万 - 项目类别:
DIRECT OBSERVATION OF THE QUATERNARY CONFORMATIONAL CHANGES INDUCED BY SUBSTRATE
直接观察底物引起的四元构象变化
- 批准号:
7954451 - 财政年份:2009
- 资助金额:
$ 29.54万 - 项目类别:
DIRECT OBSERVATION OF THE QUATERNARY CONFORMATIONAL CHANGES INDUCED BY SUBSTRATE
直接观察底物引起的四元构象变化
- 批准号:
7722147 - 财政年份:2008
- 资助金额:
$ 29.54万 - 项目类别:
TIME EVOLUTION OF THE ALLOSTERIC TRANSITION OF ASPARTATE TRANSCARBAMOYLASE
天冬氨酸转氨甲酰酶变构转变的时间演化
- 批准号:
7597962 - 财政年份:2007
- 资助金额:
$ 29.54万 - 项目类别:
TIME EVOLUTION OF THE ALLOSTERIC TRANSITION OF ASPARTATE TRANSCARBAMOYLASE
天冬氨酸转氨甲酰酶变构转变的时间演化
- 批准号:
7370443 - 财政年份:2006
- 资助金额:
$ 29.54万 - 项目类别:
TIME EVOLUTION OF THE ALLOSTERIC TRANSITION OF ASPARTATE TRANSCARBAMOYLASE
天冬氨酸转氨甲酰酶变构转变的时间演化
- 批准号:
7180422 - 财政年份:2005
- 资助金额:
$ 29.54万 - 项目类别:
STRUCTURE OF A COBALT-SUBSTITUTED MUTANT OF ALKALINE PHOSPHASE
碱性磷酸相的钴取代突变体的结构
- 批准号:
6972664 - 财政年份:2004
- 资助金额:
$ 29.54万 - 项目类别:
TIME EVOLUTION OF ALLOSTERIC TRANSITION OF ASPARTATE TRANSCARBAMOYLASE
天冬氨酸转氨甲酰酶变构转变的时间演化
- 批准号:
6976330 - 财政年份:2004
- 资助金额:
$ 29.54万 - 项目类别:
STRUCT & FUNCT OF MUTANT VERSIONS OF ALKALINE PHOSPHATASE FROM ESCHERICHIA COLI
结构体
- 批准号:
6221083 - 财政年份:1999
- 资助金额:
$ 29.54万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Developing a novel disease-targeted anti-angiogenic therapy for CNV
开发针对 CNV 的新型疾病靶向抗血管生成疗法
- 批准号:
10726508 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
Single-molecule protein sequencing by barcoding of N-terminal amino acids
通过 N 端氨基酸条形码进行单分子蛋白质测序
- 批准号:
10757309 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
Potent broadly neutralizing antibody development against the HIV-1 fusion peptide epitope
针对 HIV-1 融合肽表位的强效广泛中和抗体的开发
- 批准号:
10838825 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
B Cell Biology in the Context of Infectious Diseases, Autoimmunity and B Cell Cancers
传染病、自身免疫和 B 细胞癌症背景下的 B 细胞生物学
- 批准号:
10683443 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别:
A simulation platform to predict dose and therapeutic window of immunocytokines
预测免疫细胞因子剂量和治疗窗的模拟平台
- 批准号:
10698708 - 财政年份:2023
- 资助金额:
$ 29.54万 - 项目类别: