High Precision Bioassay Using Robotics and Statistics
使用机器人和统计学进行高精度生物测定
基本信息
- 批准号:7221731
- 负责人:
- 金额:$ 35.47万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-02-15 至 2009-02-28
- 项目状态:已结题
- 来源:
- 关键词:AccountingAddressAlgorithmsAnimal ExperimentsArtsAttentionBiological AssayBiotechnologyCellsCodeComputer softwareConsultCultured CellsDataData AnalysesData CompromisingData SetDetectionDevelopmentDoseDyesGoalsHybridsIndustryLaboratoriesLansky Play-Performance StatusLocationMarketingMeasurementMeasuresMedicalMethodsModelingNumbersPerformancePharmacologic SubstancePropertyProteinsRandomizedRangeRateRelative (related person)ReportingResearch PersonnelRobotRoboticsSample SizeSamplingSimulateSoftware ToolsSourceSystemTechnologyTestingTimeVaccinesVariantWorkabstractingassay developmentbasecostculture platesdesignimprovedmulticore processorneutralizing antibodynovelprototyperesearch studyresponsestatistics
项目摘要
DESCRIPTION (provided by applicant): Abstract Cell culture bioassays are often laborious and imprecise even after substantial development efforts. These bioassays are used broadly in the biotechnology industry to measure protein or vaccine products in development and for lot release. Imprecise assays and slow assay development contribute to slow product development. Common practice in cell culture bioassay ignores statistical and regulatory guidance by failing to utilize proper randomization and not accounting for group effects (i.e.; as caused by multi-channel pipettes). In addition, lack of attention to location effects within the assays, combined with simplistic analyses of assay data, compromise the precision and efficiency of cell culture bioassays. Lansky Consulting LLC will develop a standardized approach to cell culture bioassay using laboratory robots followed by modern statistical analysis. This combination will address the need for randomization, location effects, serial dilution, grouped dilution, and multiple sources of variation in assay response. The work described in this proposal will demonstrate the performance gains associated with: 1) standardized designs (including designs that require robots for randomization), 2) linear and nonlinear mixed split- or strip-plot models for bioassay analysis, and 3) advances in implementation of this modern standardized approach to bioassays. The precision gains from the combined package of modern bioassay methods will be shown to reduce the need for sample replication by an order of magnitude or more. Both simulated data and long-term lab experiments with bioassays will be used. The benefits of these new methods include lower assay costs, rapid application to new assay systems, and easy access to best practices in design, implementation, and analysis. Most importantly, by building a turnkey robotic and analysis bioassay system, this level of assay performance will be made broadly available to the biotechnology industry as well as to non-profit researchers. Project Summary Narrative Bioassays are critical measurement systems for both development and lot release of pharmaceutical protein and vaccine products. Easy access to high performance bioassays will enable faster and better informed development of biotechnology products. Improved bioassay technology will bring unique, important protein and vaccine products to market more quickly to address pressing medical needs.
描述(由申请人提供):摘要即使经过大量的开发工作,细胞培养生物测定通常也是费力且不精确的。这些生物测定法广泛用于生物技术行业,以测量开发中和批量放行的蛋白质或疫苗产品。不精确的测定和缓慢的测定开发导致产品开发缓慢。细胞培养生物测定中的常见做法由于未能利用适当的随机化且未考虑群体效应(即由多通道移液器引起)而忽略了统计和监管指导。此外,缺乏对测定中位置效应的关注,加上对测定数据的简单分析,损害了细胞培养生物测定的精度和效率。 Lansky Consulting LLC 将开发一种标准化方法,使用实验室机器人进行细胞培养生物测定,然后进行现代统计分析。这种组合将满足随机化、位置效应、连续稀释、分组稀释以及测定响应变化的多个来源的需求。本提案中描述的工作将展示与以下方面相关的性能增益:1)标准化设计(包括需要机器人进行随机化的设计),2)用于生物测定分析的线性和非线性混合裂区或带状图模型,以及 3)实施这种现代标准化生物测定方法。现代生物测定方法组合所带来的精度增益将被证明可以将样品复制的需要减少一个数量级或更多。将使用模拟数据和长期实验室生物测定实验。这些新方法的优点包括降低检测成本、快速应用于新的检测系统以及轻松获得设计、实施和分析方面的最佳实践。最重要的是,通过构建交钥匙机器人和分析生物测定系统,这种水平的测定性能将广泛提供给生物技术行业以及非营利研究人员。项目摘要叙述生物测定是药物蛋白质和疫苗产品开发和批量放行的关键测量系统。轻松获得高性能生物测定将有助于更快、更明智地开发生物技术产品。改进的生物测定技术将更快地将独特、重要的蛋白质和疫苗产品推向市场,以满足紧迫的医疗需求。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Matthew Lansky其他文献
David Matthew Lansky的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Matthew Lansky', 18)}}的其他基金
Better bioassays via designs for robots analyses with improved model selection and similarity bounds that limit potency bias
通过机器人分析设计实现更好的生物测定,并改进模型选择和限制效力偏差的相似性界限
- 批准号:
10155988 - 财政年份:2021
- 资助金额:
$ 35.47万 - 项目类别:
High Precision Bioassay Using Robotics and Statistics
使用机器人和统计学进行高精度生物测定
- 批准号:
7613835 - 财政年份:2005
- 资助金额:
$ 35.47万 - 项目类别:
High Precision Bioassay Using Robotics and Statistics
使用机器人和统计学进行高精度生物测定
- 批准号:
6882967 - 财政年份:2005
- 资助金额:
$ 35.47万 - 项目类别:
High Precision Bioassay Using Robotics and Statistics
使用机器人和统计学进行高精度生物测定
- 批准号:
7371144 - 财政年份:2005
- 资助金额:
$ 35.47万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
相似海外基金
Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
- 批准号:
10590913 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
- 批准号:
10723819 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
- 批准号:
10655968 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
- 批准号:
10678108 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
- 批准号:
10798514 - 财政年份:2023
- 资助金额:
$ 35.47万 - 项目类别: