Hardware-aware Network Architecture Search under ML Training workloads
ML 训练工作负载下的硬件感知网络架构搜索
基本信息
- 批准号:2904511
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Achieving the optimal delay/energy/accuracy requires the co-optimization of Neural Network (NN) workload together with the system hardware it is deployed in. This is particularly important on mobile systems running on batteries, where to deploy more complex workloads, retraining-adaptation might be limited due to energy or computation constraints.Neural Architecture Search (NAS) solutions enable the exploration of the NN graph characteristics in an efficient way, adapting the design specifics of the neural architecture to the machine learning task at hand. The aim of this PhD tackles the design of an open-source, hardware aware NAS methodology to optimize not only inference but also on-device training. Furthermore, hardware considerations will be expanded to lower-level processor specifications (for instance, NVM parameters, DVFS design) alongside system-level characteristics.Key Research QuestionsThe objective of the research is to investigate the open problems in the domain of hardware-aware network architecture search (NAS). In particular, it will focus on a proof of concept system model that will be aware of established opportunities for efficiency. Examples of these include different frequency/voltage operation points (DVFS) and hybrid memories (off-chip/on-chip, non-volatile/volatile) with multiple power operation modes. A key challenge will be integrating this hardware-defined search-space with that of search-space of the neural architecture to perform joint-optimization of both neural architecture and hardware design spaces in a tractable manner. The design of this NAS method will be a useful tool, but just as important will be the results this tool is able to produce - specifically novel neural architectures and novel hardware designs that especially when run jointly produce high efficiency systems. It is expected that by analysing the workload-aware optimized systems, design and micro-architectural innovations will result in the exceptional power, performance and area metrics for such heterogeneous hardware designs.Work expected of the ICASE studentDuring the Ph.D, the student will research and address the computing and memory requirements of a system model that includes the NAS scheme and optimises an on-device training workload.While addressing the key research questions, the student will work in a top-class environment, with colleagues from the CaMLSys group at the University of Cambridge. There will be a minimum of a 3 month placement with the industrial partner IMEC where the student will work in a diverse environment with scientists devoted to world leading R&D and innovation in nanoelectronics and digital technologies.
实现最佳的延迟/能量/准确性需要进行神经网络(NN)工作负载以及部署的系统硬件的合作化。这对于在电池上运行的移动系统尤为重要,在该电池上运行更复杂的工作量,重新适应可能会受到能量或计算范围的限制。神经体系结构的细节到手头的机器学习任务。该博士的目的是应对开源,硬件意识到的NAS方法的设计,不仅可以优化推理,而且还要优化设备培训。此外,硬件注意事项将扩展到较低级别的处理器规范(例如,NVM参数,DVFS设计)以及系统级特征。特别是,它将集中于概念系统模型的证明,该模型将意识到既定的效率机会。这些示例包括具有多个功率操作模式的不同频率/电压操作点(DVF)和混合记忆(片外/片上,非挥发性/挥发性)。一个关键的挑战将是将这种硬件定义的搜索空间与神经体系结构的搜索空间集成在一起,以以可操作的方式对神经体系结构和硬件设计空间进行联合优化。这种NAS方法的设计将是一个有用的工具,但是重要的是该工具能够产生的结果 - 特别是新型的神经体系结构和新型硬件设计,尤其是当运行共同生成高效率系统时。可以预期,通过分析工作负载的优化系统,设计和微构造创新将导致这种异质硬件设计的特殊功能,绩效和面积指标。学院期望的工作期望的工作是学生居住博士学位的工作,该学生将研究和解决NAS培训的系统模型,并解决一项启动工作的计算和记忆要求,并将工作培训培训。顶级环境,剑桥大学的CAMLSYS集团的同事。工业合作伙伴IMEC至少要有3个月的安置,在该公司将在多元化的环境中工作,科学家致力于世界领先的研发以及纳米电子和数字技术的创新。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
动态无线传感器网络弹性化容错组网技术与传输机制研究
- 批准号:61001096
- 批准年份:2010
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于计算和存储感知的运动估计算法与结构研究
- 批准号:60803013
- 批准年份:2008
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CAREER: Toward Power Delivery Network-aware Hardware Security
职业:迈向电力传输网络感知硬件安全
- 批准号:
2338069 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Continuing Grant
A Knowledge-aware Multi-tasks-based Disease Network Construction on Biomedical Literature
基于生物医学文献的知识感知多任务疾病网络构建
- 批准号:
24K15097 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
CC* Integration-Small: Network-Aware Edge Computing for Real-time Wildfire Detection
CC* Integration-Small:用于实时野火检测的网络感知边缘计算
- 批准号:
2346755 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Application-Aware Trustworthy Quantum Routing Framework with In-Network Computation
具有网内计算功能的应用感知可信量子路由框架
- 批准号:
23K28070 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
SCC-PG: Towards A User-Centered and Equity-Aware Micromobility Sharing Co-Design Network to Interact with A Distressed Municipality
SCC-PG:建立一个以用户为中心、具有公平意识的微交通共享协同设计网络,与陷入困境的城市进行互动
- 批准号:
2303575 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant