共同进化计算及其应用研究

结题报告
项目介绍
AI项目解读

基本信息

  • 批准号:
    69903010
  • 项目类别:
    青年科学基金项目
  • 资助金额:
    14.0万
  • 负责人:
  • 依托单位:
  • 学科分类:
    F0201.计算机科学的基础理论
  • 结题年份:
    2002
  • 批准年份:
    1999
  • 项目状态:
    已结题
  • 起止时间:
    2000-01-01 至2002-12-31

项目摘要

Coevolution among different species is a general type of phenomena characteristic of biologic evolution in nature, which can be simulated to improve the efficiency and adapatability of evolutionary computations. The computational models of coevolution and their applications in complex optimization problems have been studied in this project. Main researches include: problem decomposition-based scalable macro-evolutionary algorithms, the coevolutionary computation model of genetic epistasis, the coevolutionsry computation models for task matching and scheduling problems, evolutionary decision-making techniques based on candidates ranking, evolutionary approximation technique of multi-dimensional functions, multi-objective optimization and decision-making techniques based on coevolutionary computations, evolutionary algorithms of magic squares, the principle of digital lock based on random magic square, two-way authentication and job key agreement based on random magic square, fast and exact algorithms of quadratic knapsack problems, genetic algorithms for general assignment problem. For the macro-evolutionary algorithm using divide-and-conquer approach, the increase exponent of the density of over-average fitness individuals in a population is greater than that of standard evolutionary algorithm, and increases exponentially with the number of grains decomposed. The numerical experiments consist well with this theoretical result. The macro-evolutionary algorithm can overcome the difficulty associated with dimensionality and reduce as much as possible the difficulty due to intensive epistasis; it is thus scalable and useful in engineering. The efficiency of coevolutionary algorithm for the scheduling problems with independent multi-tasks is greater than that of conventional genetic algorithms. The branch-and-bound algorithm with Lagrangian relaxation method to compute the upper bounds was proposed to solve quadratic knapsack problem (QKP), in which the computational efficiency decreases with the density of positive profits, this density susceptibility is analyzed in this paper. An ultimate reason is given that there may not exist an optimal Lagrangian multiplier matrix for QKPs with non-positive profits, so that the optimal solution to the Lagrangian relaxed problem can meet its dualized equality constraints, resulting in an upper bounding of low precision. The profit swindling approach proposed by us can eliminate the profit density's effects on computational efficiency and greatly exceed the exact QKP algorithms in overall efficiency, but without exactness reduction. The method of two-way authentication and key agreement is patent-pending and will have a near future of wide applications in network information security.
基于对单种群进化计算收敛性与多样度矛盾的分析,本课题旨在研究多因子且无一致适应值图景下共同进化计算的理论与应用。主要内容包括共同进化环境适应值评估、合作与竞争机制、异构进化、层次进化、共同进化模型及其并行计算模型等,并把共同进化计算理论用于金融股市经济学建模、细胞自动机反问题求解以及多目标优化与决策的自然平衡等问题。

结项摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--"}}
  • 发表时间:
    {{ item.publish_year || "--" }}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--"}}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.authors }}

数据更新时间:{{ patent.updateTime }}

其他文献

MOCA: A Motivational Online Conversational Agent for Improving Student Engagement in Collaborative Learning
MOCA:用于提高学生协作学习参与度的激励性在线对话代理
  • DOI:
    10.1109/tlt.2021.3129800
  • 发表时间:
    2021-10
  • 期刊:
    IEEE Transactions on Learning Technologies
  • 影响因子:
    3.7
  • 作者:
    谢涛;刘若玢;陈怡晋;刘革平
  • 通讯作者:
    刘革平
样地面积对黔中喀斯特石漠灌丛林植物多样性的影响
  • DOI:
    10.13292/j.1000-4890.201905.021
  • 发表时间:
    2019
  • 期刊:
    生态学杂志
  • 影响因子:
    --
  • 作者:
    张喜;霍达;向凯旋;侯贻菊;谢涛;崔迎春
  • 通讯作者:
    崔迎春
利用少数相关位的SoC测试数据压缩方法
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    电子测量与仪器学报
  • 影响因子:
    --
  • 作者:
    黄贵林;梁华国;谢涛;黄正峰
  • 通讯作者:
    黄正峰
基于虚拟模型的水稻冠层叶面积计算方法
  • DOI:
    --
  • 发表时间:
    2017
  • 期刊:
    农业工程学报
  • 影响因子:
    --
  • 作者:
    丁维龙;谢涛;徐利锋;张义凯
  • 通讯作者:
    张义凯
NoC架构下异构IP核的并行测试方法
  • DOI:
    --
  • 发表时间:
    2013
  • 期刊:
    电子学报
  • 影响因子:
    --
  • 作者:
    贺超;梁华国;黄正峰;谢涛
  • 通讯作者:
    谢涛

其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi || "--" }}
  • 发表时间:
    {{ item.publish_year || "--"}}
  • 期刊:
    {{ item.journal_name }}
  • 影响因子:
    {{ item.factor || "--" }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}
empty
内容获取失败,请点击重试
重试联系客服
title开始分析
查看分析示例
此项目为已结题,我已根据课题信息分析并撰写以下内容,帮您拓宽课题思路:

AI项目思路

AI技术路线图

谢涛的其他基金

比特币POW机理研究及其在散列函数分析中的应用
  • 批准号:
    61472476
  • 批准年份:
    2014
  • 资助金额:
    62.0 万元
  • 项目类别:
    面上项目
散列函数分析中的进化类智能计算方法与应用研究
  • 批准号:
    61070228
  • 批准年份:
    2010
  • 资助金额:
    35.0 万元
  • 项目类别:
    面上项目
若干幻方新问题的理论及应用研究
  • 批准号:
    60473011
  • 批准年份:
    2004
  • 资助金额:
    26.0 万元
  • 项目类别:
    面上项目

相似国自然基金

{{ item.name }}
  • 批准号:
    {{ item.ratify_no }}
  • 批准年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}

相似海外基金

{{ item.name }}
{{ item.translate_name }}
  • 批准号:
    {{ item.ratify_no }}
  • 财政年份:
    {{ item.approval_year }}
  • 资助金额:
    {{ item.support_num }}
  • 项目类别:
    {{ item.project_type }}
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了

AI项目解读示例

课题项目:调控A型流感病毒诱导IFN-β表达的机制研究

AI项目摘要:

本研究聚焦于TRIM2蛋白在A型流感病毒诱导的IFN-β表达中的调控机制。A型流感病毒是全球性健康问题,其感染可导致严重的呼吸道疾病。IFN-β作为关键的抗病毒因子,其表达水平对抗病毒防御至关重要。然而,TRIM2如何调控IFN-β的表达尚未明确。本研究假设TRIM2通过与病毒RNA或宿主因子相互作用,影响IFN-β的产生。我们将采用分子生物学、细胞生物学和免疫学方法,探索TRIM2与A型流感病毒诱导IFN-β表达的关系。预期结果将揭示TRIM2在抗病毒免疫反应中的作用,为开发新的抗病毒策略提供理论基础。该研究对理解宿主抗病毒机制具有重要科学意义,并可能对临床治疗流感病毒感染提供新的视角。

AI项目思路:

科学问题:TRIM2如何调控A型流感病毒诱导的IFN-β表达?
前期研究:已有研究表明TRIM2参与抗病毒反应,但其具体机制尚不明确。
研究创新点:本研究将深入探讨TRIM2在IFN-β表达中的直接作用机制。
技术路线:包括病毒学、分子生物学、细胞培养和免疫检测技术。
关键技术:TRIM2与病毒RNA的相互作用分析,IFN-β启动子活性检测。
实验模型:使用A型流感病毒感染的细胞模型进行研究。

AI技术路线图

        graph TD
          A[研究起始] --> B[文献回顾与假设提出]
          B --> C[实验设计与方法学准备]
          C --> D[A型流感病毒感染模型建立]
          D --> E[TRIM2与病毒RNA相互作用分析]
          E --> F[TRIM2对IFN-β启动子活性的影响]
          F --> G[IFN-β表达水平测定]
          G --> H[TRIM2功能丧失与获得研究]
          H --> I[数据收集与分析]
          I --> J[结果解释与科学验证]
          J --> K[研究结论与未来方向]
          K --> L[研究结束]
      
关闭
close
客服二维码