Applying Machine Learning to local structure in metallic systems for structural applications
将机器学习应用于金属系统的局部结构以实现结构应用
基本信息
- 批准号:2903293
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Machine learning is rapidly becoming one of the most useful tools and highly sought-after skills in computational science. In this project, the student will learn how to use machine learning algorithms and work to apply them to a key real-world problem in materials science. Understanding structure-property relationships is fundamentally important for novel materials design. Recently, high-entropy alloys, one of the most active fields in metallurgy, have demonstrated the importance of local structure (i.e. interactions on the atomic scale) to alloy physical properties. Similarly, alloys already in service in the aerospace industry, have demonstrated phenomena suggesting local structural effects on their strength. If these properties are to be successfully industrially exploited, this link between local-structure and properties needs to be fully understood. This requires the calculation of the underlying energetics driving the formation of local structure.Computer simulations are commonly used to predict order occurring within a system from an input potential, making it fairly easy to generate arbitrary large data of local structure. However, this problem is difficult to invert due to the complexity of multi-shell interactions and resulting mathematical probabilities. This makes the problem ideal for the application of machine learning techniques that can learn the mapping between energetics and local structure.This project will use machine learning models for the calculation of energetic parameters. This will enable us to estimate the energetics driving the short-range ordering observed in metallic systems. X-ray and Neutron scattering data from structural alloys will be obtained at large scale facilities (Diamond Light Source, ISIS Neutron Source), and the local structure extracted, and used to validate the machine learning models. Mechanical testing will also be carried out at the properties correlated with the models created.
机器学习正在迅速成为计算科学中最有用的工具和备受追捧的技能之一。在这个项目中,学生将学习如何使用机器学习算法并将其应用于材料科学中的关键现实世界问题。了解结构 - 陶艺关系对于新颖的材料设计至关重要。最近,冶金中最活跃的磁场之一的高渗透合金证明了局部结构(即在原子尺度上的相互作用)与合金物理特性的重要性。同样,已经在航空航天行业使用的合金表明了现象,表明了局部结构性影响其强度。如果要成功地利用这些属性,则需要充分理解本地结构和属性之间的这种联系。这需要计算驱动驱动局部结构的基础能量的计算。computer仿真通常用于预测系统内部从输入电位中发生的顺序,从而很容易生成局部结构的任意大数据。但是,由于多壳相互作用的复杂性和由此产生的数学概率,因此很难反转此问题。这使问题是应用机器学习技术的理想选择,该技术可以学习能量学和本地结构之间的映射。本项目将使用机器学习模型来计算能量参数。这将使我们能够估计驱动金属系统中观察到的短程顺序的能量学。将在大规模设施(钻石光源,ISIS中子源)和提取的局部结构中获得来自结构合金的X射线和中子散射数据,并用于验证机器学习模型。机械测试还将在与创建的模型相关的属性下进行。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
面向机器人复杂操作的接触形面和抓取策略共适应学习
- 批准号:52305030
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于偏序邻域的多粒度图机器学习与决策
- 批准号:62366008
- 批准年份:2023
- 资助金额:33 万元
- 项目类别:地区科学基金项目
基于机器学习方法的土壤多孔介质中EPFRs环境行为与生态毒性研究
- 批准号:42377385
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
基于机器学习的大学生自杀风险识别研究
- 批准号:32300917
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
面向多机器人视觉感知的自主学习机制
- 批准号:62373009
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
相似海外基金
Applying Spatial Covariance to Understand Human Variation in Genetic Disease
应用空间协方差来了解遗传疾病的人类变异
- 批准号:
10734426 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Applying Deep Learning for Predicting Retention in PrEP Care and Effective PrEP Use among Key Populations at Risk for HIV in Thailand
应用深度学习预测泰国主要艾滋病毒高危人群中 PrEP 护理的保留情况以及 PrEP 的有效使用
- 批准号:
10619943 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Demonstrating the feasibility of applying machine learning models to railway condition data: Engine condition monitoring and failure prediction
展示将机器学习模型应用于铁路状况数据的可行性:发动机状况监测和故障预测
- 批准号:
10080979 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Collaborative R&D
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
- 批准号:
2307150 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
Collaborative Research: RUI--Applying Measurements, Models, and Machine Learning to Improve Parameterization of Aerosol Water Uptake and Cloud Condensation Nuclei
合作研究:RUI——应用测量、模型和机器学习来改进气溶胶吸水和云凝核的参数化
- 批准号:
2307151 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant