Combinational, Structural and algorithmic aspects of temporal graphs

时间图的组合、结构和算法方面

基本信息

  • 批准号:
    2903280
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Boolean matrices (i.e., 0/1-matrices) appear in different contexts in computer science, machine learning, mathematics, and other areas. For example, in graph theory they provide a standard way to represent graphs, via so called adjacency and incidence matrices. In communication complexity, the main objects of study, communication problems, are described by Boolean matrices [9, 11]. In learning theory, Boolean matrices are used to represent hypothesis classes [10]. In all these areas, researchers used Boolean combinations of Boolean matrices as a natural way to express new objects via "simpler" objects. Usually, the goal is to conclude that if some property holds for the "simpler" objects, then it can or cannot be extended to hold for Boolean combinations of these objects. In graph theory, this approach was recently used in the context of graph labelling schemes [4, 7]. In communication complexity, it is used to study communication protocols with access to oracles [6, 7, 8]. In learning theory, it is used to combine hypothesis classes to obtain more powerful ones [2]. Thus, Boolean combinations of Boolean matrices naturally appear as a useful tool in a number of areas. However, (1) their usage is ad-hoc; and (2) their studies in different areas are mostly independent. The central aim of the present project is to: 1. Systematically study Boolean combinations in the context of graph theory as a means of expressing graph classes via some other graph classes. The main intention of this is to understand which graph properties are preserved by Boolean combinations, and under what conditions.The secondary aims of the project are to: 2. Formulate results about Boolean combinations of Boolean matrices known in different areas using a common language and where appropriate transfer such results from one area to another; this will contribute to building links between different areas of computer science and mathematics.3. Initiate a systematic study of Boolean combinations of Boolean matrices independently of their application.We will investigate which Boolean functions on certain hereditary classes preserve particular graph properties. Cases of these have been studied before, for example the boxicity of a graph, G, is the minimum number of interval graphs needed to represent G as their intersection [12], the number of complete graphs needed to represent graphs as their XOR [3], the number of complete or equivalence graphs needed to represent graphs as their union [1] and the number of threshold graphs needed to represent n-vertex graphs as certain functions of them [5]. We will be looking at graph functions more generally.References[1] Noga Alon. Covering graphs by the minimum number of equivalence relations. Combinatorica, 6(3):201-206, 1986. [2] Noga Alon, Amos Beimel, Shay Moran, and Uri Stemmer. Closure properties for private classification and online prediction. In Conference on Learning Theory, pages 119-152. PMLR, 2020. [3] Calum Buchanan, Christopher Purcell, and Puck Rombach. Subgraph complementation and minimum rank. The Electronic Journal of Combinatorics, 29(1), 2022. [4] Maurice Chandoo. Logical labeling schemes. Discrete Mathematics, 346(10):113565, 2023. [5] Paul Erdös, Edward T Ordman, and Yechezkel Zalcstein. Bounds on threshold dimension and disjoint threshold coverings. SIAM Journal on Algebraic Discrete Methods, 8(2):151-154, 1987. [6] Yuting Fang, Lianna Hambardzumyan, Nathaniel Harms, and Pooya Hatami. No complete problem for constant-cost randomized communication. In Proceedings of the Symposium on Theory of Computing (STOC 2024), 2024. [7] Nathaniel Harms, Sebastian Wild, and Viktor Zamaraev. Randomized communication and implicit graph representations. In Proceedings of the 54th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2022), pages 1220-1233, 2022. [8] Nathaniel Harms and Viktor Zamaraev. Randomized communication and implicit representations for matrices and graphs of sm
布尔矩阵(即 0/1 矩阵)出现在计算机科学、机器学习、数学和其他领域的不同上下文中,例如,在图论中,它们通过所谓的邻接矩阵和关联矩阵提供了图形表示的标准方法。在通信复杂性中,主要研究对象——通信问题,是通过布尔矩阵来描述的[9, 11]。在学习理论中,布尔矩阵用于表示假设类。 [10] 在所有这些领域,研究人员使用布尔矩阵的布尔组合作为通过“更简单”对象表达新对象的自然方式,通常,目标是得出结论:如果某些属性适用于“更简单”对象,则它可以或不能扩展到支持这些对象的布尔组合。在图论中,这种方法最近被用于图标记方案的背景中[4, 7]。在通信复杂性中,它用于研究具有访问权限的通信协议。到在学习理论中,它用于组合假设类以获得更强大的假设类[2],因此,布尔矩阵的布尔组合自然地在许多领域中成为有用的工具。 (1) 它们的使用是临时的;(2) 它们在不同领域的研究大多是独立的。本项目的中心目标是: 1. 在图论的背景下系统地研究布尔组合作为表达手段。其主要目的是了解布尔组合保留哪些图属性以及在什么条件下保留。该项目的次要目标是: 2. 制定有关已知布尔矩阵的布尔组合的结果。在不同领域使用通用语言,并在适当的情况下将这些结果从一个领域转移到另一个领域;这将有助于建立计算机科学和数学不同领域之间的联系。3.我们将研究某些遗传类上的哪些布尔函数保留了特定的图属性,例如图的盒子性 G 是将 G 表示为它们的区间图的最小数量。交集 [12]、将图表示为其 XOR [3] 所需的完整图的数量、将图表示为其并集 [1] 所需的完整或等价图的数量以及表示 n 顶点所需的阈值图的数量图作为它们的某些函数 [5]。我们将更广泛地研究图函数。参考文献 [1] Noga Alon,《通过最小数量的等价关系覆盖图》,6(3):201-206, 1986。 [2] Noga Alon、Amos Beimel、Shay Moran 和 Uri Stemmer。《学习理论会议》页面。 119-152。PMLR,2020。[3]Calum Buchanan、Christopher Purcell 和 Puck Rombach。组合学电子杂志,29(1),2022。[4] Maurice Chandoo。离散数学,346(10):113565, 2023。 [5] 保罗Erdös、Edward T Ordman 和 Yechezkel Zalcstein。《SIAM 代数离散方法杂志》,8(2):151-154, 1987。 [6] Yuting Fang、Lianna Hambardzumyan、Nathaniel Harms 和Pooya Hatami。《理论研讨会论文集》中的恒定成本随机通信没有完整的问题。计算 (STOC 2024),2024。 [7] Nathaniel Harms、Sebastian Wild 和 Viktor Zamaraev。第 54 届年度 ACM SIGACT 计算理论研讨会论文集 (STOC 2022),第 1220 页1233, 2022。 [8] 纳撒尼尔·哈姆斯和维克托·扎马拉耶夫。 sm 矩阵和图的随机通信和隐式表示

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

非线性模型结构性误差的动力学订正方法研究
  • 批准号:
    42375059
  • 批准年份:
    2023
  • 资助金额:
    51 万元
  • 项目类别:
    面上项目
橡胶木非结构性碳水化合物原位交联改性及梯级保护机制
  • 批准号:
    32371791
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
高性能稀土基磁热非晶粉芯高通量制备及结构性能关联性研究
  • 批准号:
    52301212
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高纬旱区复杂结构性特殊土水敏致灾机理与重大工程灾变防控
  • 批准号:
    42330708
  • 批准年份:
    2023
  • 资助金额:
    231 万元
  • 项目类别:
    重点项目
异质性视角下我国结构性货币政策工具传导机制研究
  • 批准号:
    72373080
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10884028
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
An acquisition and analysis pipeline for integrating MRI and neuropathology in TBI-related dementia and VCID
用于将 MRI 和神经病理学整合到 TBI 相关痴呆和 VCID 中的采集和分析流程
  • 批准号:
    10810913
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
  • 批准号:
    10814620
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
IMAT-ITCR Collaboration: Combining FIBI and topological data analysis: Synergistic approaches for tumor structural microenvironment exploration
IMAT-ITCR 合作:结合 FIBI 和拓扑数据分析:肿瘤结构微环境探索的协同方法
  • 批准号:
    10885376
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
Development of a 3D-VR Structural Analysis Software Ecosystem for SCI/D Research
开发用于 SCI/D 研究的 3D-VR 结构分析软件生态系统
  • 批准号:
    10482499
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了