SCH: Using Data-Driven Computational Biomechanics to Disentangle Brain Structural Commonality, Variability, and Abnormality in ASD
SCH:利用数据驱动的计算生物力学来解开 ASD 中脑结构的共性、变异性和异常性
基本信息
- 批准号:10814620
- 负责人:
- 金额:$ 29.35万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-09-01 至 2027-08-31
- 项目状态:未结题
- 来源:
- 关键词:AffectAlgorithmic SoftwareArchitectureAxonBiomechanicsBrainBrain DiseasesBrain imagingCephalicChildChildhoodClinicalComputer ModelsComputer SimulationCoupledDataDescriptorDevelopmentDiagnosisElectronic Medical Records and Genomics NetworkFiberGoalsGrowthHeterogeneityHumanImageIndividualInterventionKnowledgeLongevityMachine LearningMagnetic Resonance ImagingMechanicsMicroscopicModelingNeurodevelopmental DisorderOutcome StudyPatternPlayProcessPropertyPublic HealthReportingReproducibilityResearchRoleScientific Advances and AccomplishmentsStructural defectStructureSurfaceTestingUnited StatesWorkautism spectrum disorderbrain abnormalitiesbrain basedbrain healthbrain magnetic resonance imagingcomputerized toolsdata modelingdensitydisabilityfetalgray matterinfancyinnovationmechanical propertiesmodel buildingmulti-scale modelingneuroimagingnovelpersonalized predictionspreservationsimulationwhite matter
项目摘要
Autism spectrum disorder (ASD) affects up to 1% of children in the United States, resulting in significant
lifelong disability for the majority of those affected. Prior neuroimaging studies are limited to groupwise
analysis between ASD and controls, which cannot differentiate or disentangle cortical abnormality from
variability for a specific ASD subject. These difficulties originate from a lack of a novel brain structural
descriptor that can effectively represent the human brain architectures of each individual and extract brain
structural commonalities across individuals. Meanwhile, prior studies have demonstrated that mechanical
factors play important roles in the formation of brain architecture, including abnormalities observed in ASD.
Current brain mechanical models build upon simplified models with a focus on one specific mechanical
effort, but fail to explicitly capture the physical complexity of brain models and the interplay of multiple
mechanical factors simultaneously. This lack of knowledge is a crucial barrier to developing unbiased
models to understand the brain structural commonalities across individuals, as well as models that can
pinpoint the abnormalities in individual ASD brain. The overall objective of this research is to construct a
transformative brain structural network (BSN) for each individual brain, disentangle BSN’s commonality and
variability across individual health brains, discover the role of mechanics on the BSN’s commonality and
variability across individuals via imaging analyses and data-driven computational simulations, and pinpoint
cortical abnormality and evaluate their relevant impact in ASD brains by comparing BSN between ASD and
healthy brains. Our central hypothesis is that the brain structural network and its underlying mechanical
principles can be interpreted through a data-driven discovery of preserved, descriptive, universal, and
evident brain structural descriptor across individuals. The goal of the proposed work will be achieved by
completing the following three specific aims: (1) we will reconstruct individual cortical surfaces to identify
and assess 3-hinge gyral junctions (3HGs) and 3HG-based brain structural network and therefore examine
brain structure commonality across individual brains; (2) we will construct data-driven fetal whole brain
models, perform massive simulations with varying mechanical conditions, and collect data for machine-learning analysis; (3) we will evaluate brain structural network’s abnormality in ASD by conducting
comparison analysis with health brain and pinpoint mechanical factors that lead to this abnormality across
individuals.
自闭症谱系障碍 (ASD) 影响着美国多达 1% 的儿童,导致严重的
大多数受影响者将终身残疾。之前的神经影像学研究仅限于分组。
ASD 和对照之间的分析,无法区分或区分皮质异常和
特定 ASD 受试者的变异性源于缺乏新的大脑结构。
能够有效表征每个个体的人脑结构并提取大脑的描述符
同时,先前的研究表明,机械结构具有共性。
因素在大脑结构的形成中发挥着重要作用,包括在自闭症谱系障碍中观察到的异常。
当前的大脑机械模型建立在专注于一种特定机械的模型之上
努力,但未能明确捕捉大脑模型的物理复杂性和多个相互作用
这种知识的缺乏是发展公正性的一个关键障碍。
了解个体大脑结构共性的模型,以及能够
查明个体 ASD 大脑的异常情况 这项研究的总体目标是构建一个
为每个大脑构建变革性大脑结构网络(BSN),理清 BSN 的共性并
个体健康大脑的变异性,发现机制对 BSN 共性的作用,以及
通过成像分析和数据驱动的计算模拟来确定个体之间的变异性,并精确定位
皮质异常,并通过比较 ASD 和 ASD 之间的 BSN 来评估其对 ASD 大脑的相关影响
我们的中心假设是大脑结构网络及其潜在的机械作用。
可以通过数据驱动的发现来解释保留的、描述性的、普遍的和
跨个体的明显大脑结构描述符将通过以下方式实现拟议工作的目标。
(1) 我们将重建各个皮质表面来识别
并评估 3 铰链回旋连接 (3HG) 和基于 3HG 的大脑结构网络,从而检查
个体大脑的大脑结构共性;(2)我们将构建数据驱动的胎儿全脑;
(3) 我们将通过进行自闭症谱系障碍患者大脑结构网络的异常评估
与健康大脑进行比较分析,找出导致这种异常的机械因素
个人。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xianqiao Wang其他文献
Xianqiao Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
高吞吐低时延的多元LDPC码译码算法及其软件架构研究
- 批准号:62301029
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
机理与数据耦合驱动的AI赋能工业软件理论与算法
- 批准号:52335001
- 批准年份:2023
- 资助金额:230 万元
- 项目类别:重点项目
能量一阶导数的GPU算法和异构并行计算:WESP软件的发展和向国产异构平台的移植
- 批准号:22373112
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向量子模拟算法的量子软件优化技术研究
- 批准号:62302395
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于E级超算的裂隙岩体三维数值流形法高性能算法研究及软件开发
- 批准号:
- 批准年份:2022
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Multi-modal Tracking of In Vivo Skeletal Structures and Implants
体内骨骼结构和植入物的多模式跟踪
- 批准号:
10839518 - 财政年份:2023
- 资助金额:
$ 29.35万 - 项目类别:
A Multi-Modal Wearable Sensor for Early Detection of Cognitive Decline and Remote Monitoring of Cognitive-Motor Decline Over Time
一种多模态可穿戴传感器,用于早期检测认知衰退并远程监控认知运动随时间的衰退
- 批准号:
10765991 - 财政年份:2023
- 资助金额:
$ 29.35万 - 项目类别:
Scaling up computational genomics with tree sequences
用树序列扩展计算基因组学
- 批准号:
10471496 - 财政年份:2021
- 资助金额:
$ 29.35万 - 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
- 批准号:
9927886 - 财政年份:2020
- 资助金额:
$ 29.35万 - 项目类别:
Multi-parametric Perfusion MRI for Therapy Response Assessment in Brain Cancer
多参数灌注 MRI 用于脑癌治疗反应评估
- 批准号:
10190871 - 财政年份:2020
- 资助金额:
$ 29.35万 - 项目类别: