Multi-scale mapping of 3D spatial-temporal cortical hemodynamics at the level of
3D 时空皮质血流动力学水平的多尺度映射
基本信息
- 批准号:7297230
- 负责人:
- 金额:$ 16.9万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2007
- 资助国家:美国
- 起止时间:2007-07-01 至 2009-05-31
- 项目状态:已结题
- 来源:
- 关键词:ArteriesBiological ModelsBloodBlood VesselsBlood capillariesBlood flowCaliberCerebrovascular CirculationCerebrumCharacteristicsClassComplexCortical ColumnDementiaDependenceDepthDetectionDiagnosticDisruptionDyesElectrocorticogramErythrocytesFunctional ImagingFunctional Magnetic Resonance ImagingFunctional disorderGoalsHistologyImageImaging technologyIndividualKnowledgeLabelLaser Scanning MicroscopyLinkLocationMapsMeasurementMeasuresMetabolicMicroscopicMitochondriaNatureNeuronsOpticsOrganellesOutcomePopulationPositioning AttributePositron-Emission TomographyRattusRelative (related person)ResolutionScanningSignal TransductionSpecificityStimulusStrokeSurfaceTactileTechniquesTechnologyTestingTissuesUrsidae FamilyVascular DiseasesVasodilationVasodilation disorderVibrissaeWorkarteriolebasecapillarydata acquisitiondensityfeedinghemodynamicsimprovedin vivolight weightreconstructionrelating to nervous systemresponsesensory cortexsensory stimulussoftware developmentspatiotemporaltwo-photonvasoconstriction
项目摘要
DESCRIPTION (provided by applicant): The dynamics response of individual neuronal vessels to sensory-stimuli is crucial to form a mechanistic understanding of functional imaging technologies, such as functional MRI (fMRI), as well as for understanding neurovascular dysfunction, as occurs in stroke and dementia. Toward this goal, we propose to characterize the stimulus-evoked cerebral hemodynamic response on the level of single arterioles and capillaries throughout a significant three-dimensional volume. Further, we will relate this characterization to the underlying neuronal electrical activity, the angioarchitecture, and the mitochondria density. Vibrissa sensory cortex of rat serves as our model system. Two-photon laser scanning microscopy (TPLSM), in conjunction with dyes that label the blood lumen, and all-optical histology, a related nonlinear optics technique, serve as our primary technology. As a prerequisite to the proposed measurements, we will improve the capability of TPLSM to allow rapid assessment of multiple blood vessels. This will allow us to characterize blood flow and blood vessel diameter at micrometer resolution throughout a 2 - 3 mm3 volume, along with correlations along flow in different vessels.
Our analysis consists of three directions.
Dynamical characterization of the diameter and flow dynamics of three classes of vessels, i.e., surface communicating arterioles, penetrating arterioles, and subsurface microvessels, in response to tactile single vibrissa stimulation.
Ex vivo reconstruction of the exact angioarchitecture throughout the region of study by the in vivo vascular measurements, followed by three-dimensional mapping of the mitochondria density relative to the microvasculature.
Our results will reveal, at a minimum:
The characteristics, e.g., biphasic versus monophasic, of the temporal dynamics of the vessel diameter and blood flow changes of individual vessels.
The dependence of the responses of a vessel on its distance from the center of the neuronal activity, its connectivity to major surface feeding arteries or penetrating arterioles, and its position relative to the local metabolic need as revealed by the mitochondria density.
This work will bridge the critical gap between macroscopic functional imaging technologies such as fMRI and the microscopic understanding of single vessel responses to the neuronal activation. Stroke, vascular disease, and dementia are all dysfunctional states that relate to compromised cerebral blood flow. Our work will define the normal state of flow and bears on disruption to the normal state. It will help define optical- and MRI-based diagnostics for the detection of dysfunction and clinically appropriate interventionist therapies.
描述(由申请人提供):单个神经元血管对感觉刺激的动态响应对于形成功能成像技术(例如功能 MRI (fMRI))的机械理解以及理解神经血管功能障碍(如中风中发生的神经血管功能障碍)至关重要和痴呆症。为了实现这一目标,我们建议在整个重要的三维体积中的单个小动脉和毛细血管水平上表征刺激引起的脑血流动力学反应。此外,我们会将这种特征与潜在的神经元电活动、血管结构和线粒体密度联系起来。大鼠触须感觉皮层作为我们的模型系统。双光子激光扫描显微镜 (TPLSM) 与标记血腔的染料以及全光学组织学(一种相关的非线性光学技术)相结合,成为我们的主要技术。作为所提出的测量的先决条件,我们将提高 TPLSM 的能力,以允许快速评估多个血管。这将使我们能够以微米分辨率表征整个 2 - 3 mm3 体积中的血流和血管直径,以及不同血管中流量的相关性。
我们的分析包括三个方向。
响应于触觉单触须刺激,对三类血管(即表面交通小动脉、穿透小动脉和皮下微血管)的直径和流动动力学进行动态表征。
通过体内血管测量,对整个研究区域的精确血管结构进行离体重建,然后绘制线粒体密度相对于微脉管系统的三维图。
我们的结果至少将揭示:
血管直径的时间动态和单个血管的血流变化的特征,例如双相与单相。
血管的反应取决于其距神经元活动中心的距离、其与主要表面供给动脉或穿透小动脉的连接性,以及其相对于线粒体密度所揭示的局部代谢需求的位置。
这项工作将弥合宏观功能成像技术(例如功能磁共振成像)与单血管对神经元激活反应的微观理解之间的关键差距。中风、血管疾病和痴呆都是与脑血流受损有关的功能障碍状态。我们的工作将定义流动的正常状态并影响正常状态的破坏。它将有助于定义基于光学和 MRI 的诊断方法,以检测功能障碍和临床上适当的干预疗法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Kleinfeld其他文献
David Kleinfeld的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Kleinfeld', 18)}}的其他基金
A web-based framework for multi-modal visualization and annotation of neuroanatomical data
基于网络的神经解剖数据多模式可视化和注释框架
- 批准号:
10365435 - 财政年份:2021
- 资助金额:
$ 16.9万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10640249 - 财政年份:2019
- 资助金额:
$ 16.9万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10425220 - 财政年份:2019
- 资助金额:
$ 16.9万 - 项目类别:
Direct wavefront sensing and adaptive optics to enable two-photon imaging axons and spines throughout all of cortex
直接波前传感和自适应光学器件可实现整个皮层的双光子成像轴突和脊柱
- 批准号:
10021661 - 财政年份:2019
- 资助金额:
$ 16.9万 - 项目类别:
Imaging the molecular constituents of the brain vasculature and lymphatic connectome
对脑脉管系统和淋巴连接组的分子成分进行成像
- 批准号:
10834499 - 财政年份:2019
- 资助金额:
$ 16.9万 - 项目类别:
相似国自然基金
脉络膜黑色素瘤循环血内肿瘤细胞的捕获、扩增、生物学特征分析与外泌体载药模型构建的研究
- 批准号:82303540
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
利用活体动物模型研究代表性纳米载体对血-脑脊液屏障的生物效应
- 批准号:31630027
- 批准年份:2016
- 资助金额:280.0 万元
- 项目类别:重点项目
基于血小板活化的血瘀模型生物学特征探讨及方证相关研究
- 批准号:81473555
- 批准年份:2014
- 资助金额:73.0 万元
- 项目类别:面上项目
基于肾虚血瘀型膝OA肌骨系统模型的"筋""骨"应力生物力学特性研究
- 批准号:81102607
- 批准年份:2011
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
基于方证相关的血瘀模型红细胞膜生物学研究
- 批准号:81173186
- 批准年份:2011
- 资助金额:60.0 万元
- 项目类别:面上项目
相似海外基金
Uncertainty aware virtual treatment planning for peripheral pulmonary artery stenosis
外周肺动脉狭窄的不确定性虚拟治疗计划
- 批准号:
10734008 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别:
Biomimetic Vascular Matrix for Vascular Smooth Muscle Cell Mechanobiology and Pathology
用于血管平滑肌细胞力学生物学和病理学的仿生血管基质
- 批准号:
10586599 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别:
Interaction of Mesenteric Adipose Tissue Physiology, Expansion, and Inflammation with Inflammatory Bowel Disease
肠系膜脂肪组织生理学、扩张和炎症与炎症性肠病的相互作用
- 批准号:
10590505 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别:
MagPAD: Magnetic Puncture, Access, and Delivery of Large Bore Devices to the Heart Via the Venous System
MagPAD:通过静脉系统对大口径装置进行磁穿刺、进入和输送至心脏
- 批准号:
10600737 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别:
Patient specific computational modeling of fluid-structure interactions of cerebrospinal fluid for biomarkers in Alzheimer's disease
阿尔茨海默病生物标志物脑脊液流固相互作用的患者特定计算模型
- 批准号:
10644281 - 财政年份:2023
- 资助金额:
$ 16.9万 - 项目类别: