High Resolution In-Utero Mapping of Fetal Brain Development from Combined MRI

联合 MRI 胎儿大脑发育的高分辨率宫内图谱

基本信息

项目摘要

DESCRIPTION (provided by applicant): Understanding normal and abnormal patterns of brain development in fetuses and neonates is a key factor in early detection of developmental disorders. This project proposal seeks to develop and refine novel magnetic resonance image reconstruction and analysis methodology to allow, for the first time, the mapping of in-utero fetal brain development. One of the most common abnormalities detected by clinical imaging of the developing fetal brain is ventriculomegaly, which, despite the absence of other clinical or imaging findings, is associated with neurodevelopmental disabilities in infancy and childhood in up to 50% of cases. Although ultrasound allows diagnosis of the condition, it has not been able to distinguish those fetus that will have poor neurological outcome from those with normal outcome. Recent developments in fast magnetic resonance imaging have permitted the use of MRI to study the fetal anatomy and this technique is now being routinely used at a small number of sites around the world including UCSF. However, MR imaging of the fetal brain is still challenging because of imaging distortions caused by motion of the fetus within the mother and by artifacts caused by the surrounding maternal anatomy. Higher resolution or 3D acquisitions are not possible because of motion of the fetus during the acquisition time^ required. The current clinical 2D slice data individually provide limited resolution and contrast and, most importantly, often contain severe motion corruption between slices. This project is motivated by the observation that it is possible to apply computer vision and image processing techniques to correct relative motion between the multiple stacks of low resolution fetal slices, and create a single volumetric image with high isotropic 3D resolution and consistent geometry. Such higher resolution images provide structure that may be analyzed using computational morphometric techniques that can detect subtle focal differences in the pattern of tissue volume, location and surface folding. This project will combine such powerful techniques with extensive fetal and neonatal imaging experience at UCSF, allowing direct clinical application of the methodology to study morphologic aberrations associated with ventriculomegaly and to correlate these with clinical outcome. The ability to apply these computational techniques to in-utero data will provide an entirely new view of the developing brain, which promises to shed new light on early developmental problems both in fetuses and premature neonates.
描述(由申请人提供):了解胎儿和新生儿大脑发育的正常和异常模式是早期发现发育障碍的关键因素。该项目提案旨在开发和完善新颖的磁共振图像重建和分析方法,以首次绘制宫内胎儿大脑发育的图谱。发育中的胎儿大脑临床成像检测到的最常见异常之一是脑室扩大,尽管没有其他临床或影像学发现,但高达 50% 的病例与婴儿期和儿童期的神经发育障碍有关。尽管超声波可以诊断这种情况,但它无法区分那些神经系统结果不良的胎儿与正常结果的胎儿。快速磁共振成像的最新发展允许使用 MRI 来研究胎儿解剖结构,并且该技术目前在包括加州大学旧金山分校在内的世界各地的少数地点常规使用。然而,胎儿大脑的磁共振成像仍然具有挑战性,因为胎儿在母亲体内的运动以及周围母亲解剖结构造成的伪影会导致成像失真。由于胎儿在所需采集时间内的运动,不可能实现更高分辨率或 3D 采集。当前的临床 2D 切片数据单独提供有限的分辨率和对比度,最重要的是,切片之间通常包含严重的运动损坏。该项目的动机是观察到可以应用计算机视觉和图像处理技术来校正多堆低分辨率胎儿切片之间的相对运动,并创建具有高各向同性 3D 分辨率和一致几何形状的单个体积图像。这种更高分辨率的图像提供了可以使用计算形态测量技术进行分析的结构,该技术可以检测组织体积、位置和表面折叠的图案中的细微焦点差异。该项目将把如此强大的技术与加州大学旧金山分校丰富的胎儿和新生儿成像经验相结合,允许直接临床应用该方法来研究与脑室扩大相关的形态畸变,并将其与临床结果相关联。将这些计算技术应用于子宫内数据的能力将为大脑发育提供全新的视角,这有望为胎儿和早产儿的早期发育问题提供新的线索。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Colin Studholme其他文献

Colin Studholme的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Colin Studholme', 18)}}的其他基金

Motion Robust Mapping of Human Brain Functional Connectivity Changes in Utero
子宫内人脑功能连接变化的运动鲁棒映射
  • 批准号:
    8509448
  • 财政年份:
    2013
  • 资助金额:
    $ 27.53万
  • 项目类别:
Motion Robust Mapping of Human Brain Functional Connectivity Changes in Utero
子宫内人脑功能连接变化的运动鲁棒映射
  • 批准号:
    8688242
  • 财政年份:
    2013
  • 资助金额:
    $ 27.53万
  • 项目类别:
Motion Robust Mapping of Human Brain Functional Connectivity Changes in Utero
子宫内人脑功能连接变化的运动鲁棒映射
  • 批准号:
    9067148
  • 财政年份:
    2013
  • 资助金额:
    $ 27.53万
  • 项目类别:
Mapping Patterns of Brain Tissue Growth in Premature Neonates
绘制早产儿脑组织生长模式
  • 批准号:
    8326094
  • 财政年份:
    2009
  • 资助金额:
    $ 27.53万
  • 项目类别:
QUALITATIVE HIGH FIELD STRUCTURAL IMAGE ANALYSIS
定性高场结构图像分析
  • 批准号:
    7957227
  • 财政年份:
    2009
  • 资助金额:
    $ 27.53万
  • 项目类别:
Mapping Patterns of Brain Tissue Growth in Premature Neonates
绘制早产儿脑组织生长模式
  • 批准号:
    8514085
  • 财政年份:
    2009
  • 资助金额:
    $ 27.53万
  • 项目类别:
Mapping Patterns of Brain Tissue Growth in Premature Neonates
绘制早产儿脑组织生长模式
  • 批准号:
    8299801
  • 财政年份:
    2009
  • 资助金额:
    $ 27.53万
  • 项目类别:
Mapping Patterns of Brain Tissue Growth in Premature Neonates
绘制早产儿脑组织生长模式
  • 批准号:
    7739597
  • 财政年份:
    2009
  • 资助金额:
    $ 27.53万
  • 项目类别:
Mapping Patterns of Brain Tissue Growth in Premature Neonates
绘制早产儿脑组织生长模式
  • 批准号:
    8119421
  • 财政年份:
    2009
  • 资助金额:
    $ 27.53万
  • 项目类别:
High Resolution In-Utero Mapping of Fetal Brain Development from Combined MRI
联合 MRI 胎儿大脑发育的高分辨率宫内图谱
  • 批准号:
    7469332
  • 财政年份:
    2006
  • 资助金额:
    $ 27.53万
  • 项目类别:

相似国自然基金

基于驾驶人行为理解的人机共驾型智能汽车驾驶权分配机制研究
  • 批准号:
    52302494
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
人机共驾汽车驾驶风险分析及控制权智能交互机理
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
定性与定量分析跟驰行驶中汽车驾驶员情感-行为交互作用机理
  • 批准号:
    71901134
  • 批准年份:
    2019
  • 资助金额:
    19.0 万元
  • 项目类别:
    青年科学基金项目
兼顾效率与能效的城市道路智能网联汽车驾驶行为优化及实证研究
  • 批准号:
    71871028
  • 批准年份:
    2018
  • 资助金额:
    46.0 万元
  • 项目类别:
    面上项目
汽车驾驶员疲劳的心理生理检测及神经机制
  • 批准号:
    31771225
  • 批准年份:
    2017
  • 资助金额:
    60.0 万元
  • 项目类别:
    面上项目

相似海外基金

Mechanisms of compartmentalized plasticity in learning and memory
学习和记忆的区隔可塑性机制
  • 批准号:
    10522519
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
Identifying the role of notch3 in brain pericyte function in health and Alzheimer's disease
确定 notch3 在健康和阿尔茨海默病中大脑周细胞功能中的作用
  • 批准号:
    10679198
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
Disruption of spinal circuit early development after silencing En1/Foxp2 interneurons
沉默 En1/Foxp2 中间神经元后脊髓回路早期发育中断
  • 批准号:
    10752857
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
Retinal Circuitry Response to Nerve Injury
视网膜回路对神经损伤的反应
  • 批准号:
    10751621
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
Exploratory Analysis Tools for Developmental Studies of Brain Microstructure with Diffusion MRI
利用扩散 MRI 进行脑微结构发育研究的探索性分析工具
  • 批准号:
    10645844
  • 财政年份:
    2023
  • 资助金额:
    $ 27.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了