Mechanisms of compartmentalized plasticity in learning and memory
学习和记忆的区隔可塑性机制
基本信息
- 批准号:10522519
- 负责人:
- 金额:$ 38.88万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2023
- 资助国家:美国
- 起止时间:2023-04-01 至 2028-03-31
- 项目状态:未结题
- 来源:
- 关键词:AcetylcholineAfferent NeuronsAnatomyAssociation LearningAutomobile DrivingAxonBehaviorBehavioralBrainBrain DiseasesButyratesCell physiologyCellsCyclic AMPDataDecision MakingDevelopmentDissociationDrosophila genusDrosophila melanogasterEndoplasmic ReticulumEventGenomicsGoalsImageIndividualInvestigationLearningMammalsMediatingMemoryMemory DisordersMemory impairmentModelingMolecularMolecular BiologyMushroom BodiesMutationNervous SystemNeuronsNeurosciences ResearchOdorsOlfactory LearningOutputPathway interactionsPatternProcessRNA InterferenceReporterResolutionRetrievalRewardsRoleRouteSensorySignal TransductionStimulusSucroseSynapsesSynaptic plasticitySystemTestingbehavioral responseexperienceexperimental studyflexibilityflyin vivo imaginginsightknowledge basememory encodingmodel organismnervous system disorderneuronal circuitryneurotransmitter releasenovelpostsynapticpresynapticrational designresponsesensorsensory stimulussynaptic functiontherapy design
项目摘要
Project Summary
A major goal of neuroscience research is to understand how experience reweights the flow of information
across brain circuits. This involves plasticity that occurs at across different regions of neurons (i.e., subcellular
compartmentalization). Our preliminary data revealed compartmentalization of signaling within neurons that
encode olfactory memories, and further found that learning drives spatially broad elevations of Ca2+. This
suggests that multiple signals are integrated across different spatial scales during learning events to modulate
compartmentalized plasticity. Here we will test how compartmentalized plasticity drives the ensembles of
changes across multiple spatial scales in the nervous system that leads to coherent action selection.
We will test the mechanisms of compartmentalized presynaptic plasticity down to the subcellular level, using
the genetically powerful, highly tractable nervous system of Drosophila melanogaster. The Drosophila
mushroom body (MB) carries olfactory information from olfactory projection neurons to downstream circuits
that mediate fundamental decision-making processes. We will use this system as a testbed to dissect the
mechanisms of compartmentalized plasticity at the molecular levels, examine cellular integration and synaptic
plasticity, and probe how these processes modulate behavioral action selection via actions on discrete circuits
that modulate behavior.
Understanding how memories are encoded in the brain and disrupted in brain disorders is a prerequisite to the
rational design of treatments for memory impairment. Results of the present studies will provide guideposts for
future research into the molecular biology of memory formation across multiple model organisms (including
mammals), as the function of key molecules, cellular mechanisms, cellular compartmentalization and synaptic
function, circuit motifs, and computational primitives are both conserved across species and crucial across
multiple circuits & types of memory. The project will support our long-term goal of understanding of memory
down to the single-cell level, contributing to the knowledge base necessary for the rational development of
novel treatments for memory impairment.
项目摘要
神经科学研究的主要目标是了解经验如何重新获得信息流
跨大脑电路。这涉及在神经元不同区域的可塑性(即亚细胞
分隔)。我们的初步数据揭示了神经元内信号传导的分区化,
编码嗅觉记忆,并进一步发现,学习驱动了Ca2+的空间广泛升高。这
表明在学习事件期间,多个信号在不同的空间尺度上集成以调制
隔室塑性。在这里,我们将测试分隔的可塑性如何推动
神经系统中多个空间尺度的变化导致连贯的作用选择。
我们将使用隔室化的前可塑性的机理,直到亚细胞水平
果蝇果蝇的遗传功能强大,高度可触犯的神经系统。果蝇
蘑菇体(MB)将嗅觉信息从嗅觉投影神经元转移到下游电路
调解基本决策过程。我们将使用此系统作为测试台
分子水平上隔室塑性的机制,检查细胞整合和突触
可塑性,并探测这些过程如何通过离散电路调节行为行动选择
这种调节行为。
了解记忆如何在大脑中编码并在脑部疾病中破坏是一种先决条件
用于记忆障碍的治疗方法的理性设计。本研究的结果将为指南提供
对多种模型生物的记忆形成的分子生物学的未来研究(包括
哺乳动物),作为关键分子的功能,细胞机制,细胞隔室化和突触
功能,电路图案和计算基原始物质既保存在物种之间,又有至关重要的
多个电路和内存类型。该项目将支持我们理解记忆的长期目标
一直到单细胞水平,有助于理性发展所必需的知识基础
记忆障碍的新型治疗方法。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Seth M Tomchik其他文献
Seth M Tomchik的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Seth M Tomchik', 18)}}的其他基金
Mechanisms of Nf1 Pathophysiology Underlying Hyperactivity
多动症背后的 Nf1 病理生理学机制
- 批准号:
10721723 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Dopaminergic circuit modulation of learning and arousal-mediated memory enhancement
学习的多巴胺能回路调节和唤醒介导的记忆增强
- 批准号:
10731978 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Genetic and molecular mechanisms of Nf1-dependent neuronal regulation of metabolism
Nf1 依赖性神经元代谢调节的遗传和分子机制
- 批准号:
10418360 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Genetic and molecular mechanisms of Nf1-dependent neuronal regulation of metabolism
Nf1 依赖性神经元代谢调节的遗传和分子机制
- 批准号:
10721999 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Genetic and molecular mechanisms of Nf1-dependent neuronal regulation of metabolism
Nf1 依赖性神经元代谢调节的遗传和分子机制
- 批准号:
10621967 - 财政年份:2022
- 资助金额:
$ 38.88万 - 项目类别:
Dopaminergic circuit modulation of learning and arousal-mediated memory enhancement
学习的多巴胺能回路调节和唤醒介导的记忆增强
- 批准号:
10659534 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Dopaminergic circuit modulation of learning and arousal-mediated memory enhancement
学习的多巴胺能回路调节和唤醒介导的记忆增强
- 批准号:
10457254 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Dopaminergic circuit modulation of learning and arousal-mediated memory enhancement
学习的多巴胺能回路调节和唤醒介导的记忆增强
- 批准号:
10217273 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Mechanisms of Nf1 pathophysiology underlying hyperactivity
多动症背后的 Nf1 病理生理学机制
- 批准号:
9912875 - 财政年份:2017
- 资助金额:
$ 38.88万 - 项目类别:
Mechanisms of Nf1 Pathophysiology Underlying Hyperactivity
多动症背后的 Nf1 病理生理学机制
- 批准号:
10621966 - 财政年份:2017
- 资助金额:
$ 38.88万 - 项目类别:
相似国自然基金
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:
- 批准年份:2021
- 资助金额:60 万元
- 项目类别:面上项目
面向类脑智能感知的编码运算一体化柔性电子传入神经元的研究
- 批准号:62174130
- 批准年份:2021
- 资助金额:60.00 万元
- 项目类别:面上项目
不同刺灸法激活的穴位传入神经元及时间-空间反应特性
- 批准号:81973967
- 批准年份:2019
- 资助金额:55 万元
- 项目类别:面上项目
有髓传入神经纤维相应DRG神经元中Cav3.2通道N-糖基化在DPN触诱发痛发生发展中的作用机制研究
- 批准号:81801219
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
通过内皮素-1探索初级传入神经元感受疼痛或搔痒的细胞机制
- 批准号:81171040
- 批准年份:2011
- 资助金额:55.0 万元
- 项目类别:面上项目
相似海外基金
Mechanisms of the gut-brain axis that regulate innate immunity
调节先天免疫的肠脑轴机制
- 批准号:
10623925 - 财政年份:2023
- 资助金额:
$ 38.88万 - 项目类别:
Disambiguating natural aging from Alzheimer's disease through changes in oral neuromechanics
通过改变口腔神经力学来消除自然衰老与阿尔茨海默病的关系
- 批准号:
10634762 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Disambiguating natural aging from Alzheimer's disease through changes in oral neuromechanics
通过改变口腔神经力学来消除自然衰老与阿尔茨海默病的关系
- 批准号:
10256795 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Disambiguating natural aging from Alzheimer's disease through changes in oral neuromechanics
通过改变口腔神经力学来消除自然衰老与阿尔茨海默病的关系
- 批准号:
10543237 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别:
Disambiguating natural aging from Alzheimer's disease through changes in oral neuromechanics
通过改变口腔神经力学来消除自然衰老与阿尔茨海默病的关系
- 批准号:
10055619 - 财政年份:2020
- 资助金额:
$ 38.88万 - 项目类别: