What can AI Language Models tell us about how textual information influences understanding of environmental issues?
关于文本信息如何影响对环境问题的理解,人工智能语言模型可以告诉我们什么?
基本信息
- 批准号:2887340
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In order to address and mitigate the potentially catastrophic impact of climate change, humans will need to make drastic changes to their behaviour. Such changes will require widespread understanding of how individual and collective human activities affect the environment, as well as practical action based on this understanding. Achieving such understanding and action will depend not only on dissemination of relevant information but also its assimilation, and critically, the motivational response that it evokes. Thus, investigation of how to present information and analysis of the influence different forms of information may have, is vital to promoting effective action in response to climate change and environmental degradation.The neural net based Language Models developed by Artificial Intelligence researchers over the last decade (for example ELMo, BERT and, more recently, GPT3, Chat GPT) are able to learn and replicate typical patterns of natural language text to the extent that, given some natural language text input as a starting point, a language model can generate a continuation of the input that seems highly plausible and similar to the kind of elaboration or response that a human might make given that prompt. This functionality can be used to generate text for applications such as chatbots, web page creation and user interfaces in carbon tracking smartphone apps for instance. Such models can also be used to quantify and rank the likelihood of different potential continuations. This can support functionality that derives interpretations or inferences from text. For example, one can rank a set of possible responses in order to find the one most strongly "implied" by a given prompt. Or conversely, if we would like to elicit some particular response, we could search for prompting text that would impart a high likelihood to the desired continuation.Numerous applications show that this kind of functionality can support sophisticated and useful applications. However, the strengths and weaknesses of language models are still poorly understood, and the numerical ranking of alternative continuations of an information prompt does not have a clear semantics. Hence, the focus of this PhD project will be to investigate robustness and reliability of AI language models, with the aim of finding effective ways of informing and motivating humans in relation to climate change issues.Since the project will investigate limitations of AI Language Model approaches, we expect that it may consider other approaches to explaining how humans interpret and respond to information. The project may consider how one or more of these alternative perspectives may complement the analysis in terms of AI Language Models, and could potentially explore ways of combining different approaches. As part of the PhD work, it is envisaged that the student will use and contribute to the development of a collection of software tools assembled by Dr Bennett within a framework called by the acronym KARaML (Knowledge Assimilation using Reasoning and Machine Learning). This tool set provides interfaces to both Language Models as well as tools supporting semantic analysis (K-Parser) and logical reasoning (Clasp, Prover9, Vampire). The use of this software will require competency in programming (in particular using the Python language).
为了应对和减轻气候变化潜在的灾难性影响,人类需要彻底改变自己的行为。这些变化需要广泛了解个人和集体人类活动如何影响环境,以及基于这种理解的实际行动。实现这种理解和行动不仅取决于相关信息的传播,还取决于信息的吸收,更重要的是取决于它所引起的动机反应。因此,研究如何呈现信息并分析不同形式的信息可能产生的影响,对于促进应对气候变化和环境退化的有效行动至关重要。人工智能研究人员在过去十年中开发的基于神经网络的语言模型(例如 ELMo、BERT 以及最近的 GPT3、Chat GPT)能够学习和复制自然语言文本的典型模式,在某种程度上,以某些自然语言文本输入为起点,语言模型可以生成继续输入看起来很高合理且类似于人类在给出提示时可能做出的阐述或反应。此功能可用于为聊天机器人、网页创建和碳追踪智能手机应用程序中的用户界面等应用程序生成文本。此类模型还可用于对不同潜在延续的可能性进行量化和排序。这可以支持从文本导出解释或推论的功能。例如,可以对一组可能的响应进行排名,以便找到给定提示最强烈“暗示”的响应。或者相反,如果我们想引发一些特定的响应,我们可以搜索提示文本,该文本将很有可能实现所需的延续。许多应用程序表明,这种功能可以支持复杂且有用的应用程序。然而,人们对语言模型的优缺点仍然知之甚少,并且信息提示的替代延续的数字排名没有明确的语义。因此,这个博士项目的重点将是研究人工智能语言模型的稳健性和可靠性,目的是找到告知和激励人类有关气候变化问题的有效方法。由于该项目将研究人工智能语言模型方法的局限性,我们预计它可能会考虑其他方法来解释人类如何解释和响应信息。该项目可能会考虑这些替代观点中的一个或多个如何补充人工智能语言模型方面的分析,并可能探索组合不同方法的方法。作为博士工作的一部分,预计学生将使用 Bennett 博士在缩写为 KARaML(使用推理和机器学习的知识同化)的框架内组装的一系列软件工具并为其开发做出贡献。该工具集提供了语言模型的接口以及支持语义分析(K-Parser)和逻辑推理(Clasp、Prover9、Vampire)的工具。使用该软件需要具备编程能力(特别是使用 Python 语言)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
20世紀前半のフィリピン降水量データセット作成(DIAS地球観測データ統合解析プロダクトに掲載)
菲律宾20世纪上半叶降水数据集创建(发表于DIAS对地观测数据综合分析产品)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
- 批准号:
2908923 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Landscapes of Music: The more-than-human lives and politics of musical instruments
音乐景观:超越人类的生活和乐器的政治
- 批准号:
2889655 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
运用语言知识分布模型构建基于具身语义关联机制的数据库-语料库-词汇学习的AI优化系统
- 批准号:
- 批准年份:2020
- 资助金额:48 万元
- 项目类别:
基于图像与自然语言识别的多模态角膜病人工智能诊断系统的构建与验证
- 批准号:
- 批准年份:2019
- 资助金额:52 万元
- 项目类别:面上项目
语言表征机理及受脑启发的文本表示模型研究
- 批准号:61906189
- 批准年份:2019
- 资助金额:27.0 万元
- 项目类别:青年科学基金项目
面向小数据语音建模的跨语言迁移学习研究
- 批准号:61901473
- 批准年份:2019
- 资助金额:26.0 万元
- 项目类别:青年科学基金项目
面向社交媒体的需求智能发现和分析方法
- 批准号:61802374
- 批准年份:2018
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Polly: Bridging the gap in Children’s speech and language therapy through AI-powered SaaS
Polly:通过人工智能驱动的 SaaS 缩小儿童言语和语言治疗方面的差距
- 批准号:
10106658 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Launchpad
I-Corps: Translation potential of using artificial intelligence (AI) for an interactive and inclusive language-learning process designed for young children
I-Corps:使用人工智能 (AI) 为幼儿设计的交互式和包容性语言学习过程的翻译潜力
- 批准号:
2418277 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
Building AI-Powered Responsible Workforce by Integrating Large Language Models into Computer Science Curriculum
通过将大型语言模型集成到计算机科学课程中,打造人工智能驱动的负责任的劳动力队伍
- 批准号:
2336061 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Standard Grant
AI for Legal Problem Diagnosis in the Diverse Language of Australians
人工智能以澳大利亚人的多种语言诊断法律问题
- 批准号:
LP210200917 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Linkage Projects
The Development of Mathematical Models using Machine Learning with Educational Big Data for Language Acquisition and Individually Optimized Learning
利用机器学习和教育大数据开发数学模型,用于语言习得和个体优化学习
- 批准号:
23K00651 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)