Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
基本信息
- 批准号:7261797
- 负责人:
- 金额:$ 31万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-17 至 2011-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdsorptionAffectAnimal ModelAnimalsBehaviorBehavior ControlBehavioralBehavioral AssayBiological AssayBypassCaenorhabditis elegansChromosome PairingCyclic AMPDense Core VesicleDiseaseDisruptionDissectionDrug Delivery SystemsElectron MicroscopyFreezingFundingGasesGenesGeneticGenetic ScreeningGoalsHumanHyperactive behaviorImageIn VitroLearningLightLinkLocomotionLogicMapsMembraneMemoryMemory DisordersMental DepressionMental disordersMicroscopyModelingMolecularMolecular TargetMutateMutationNeuronsParalysedPathway AnalysisPathway interactionsPharmaceutical PreparationsPhenocopyProcessProteinsPurposeRateRegulationResearchResearch PersonnelResolutionRoleSignal PathwaySignal TransductionSignal Transduction PathwaySiteStudy SectionStudy modelsSynapsesSynaptic TransmissionSynaptic VesiclesTestingTransgenic OrganismsVesiclebasecapsulechromophoredesignflyfollow-upgenetic analysisin vivoinsightmutantneurotransmitter releasenovelpressurepresynapticprogramsreceptorrelating to nervous systemresearch studyresponsesynaptic function
项目摘要
DESCRIPTION (provided by applicant): Project Summary: The goal of this research is to bridge the gap between synaptic function and the control of behavior by identifying the signaling pathways that control synaptic activity. Our studies of the model organism C. elegans have shown that the integrated activities of 3 major Ga pathways control synaptic activity to produce the locomotion behavior. Within this synaptic signaling network, the neuronal Gccs pathway is an especially critical but poorly understood link between synaptic function and behavior. Despite years of research in multiple model organisms, we do not understand why animals lacking a neuronal Gas pathway are paralyzed. This proposal takes 3 approaches to investigate the core purpose of the neuronal Gas pathway during the execution of behaviors. Aim 1 asks whether and how the Gas pathway affects various synaptic vesicle pools, including a newly discovered pool of membrane contacting vesicles next to the active zone. Aim 2 expands on our startling discovery that high energy light transforms paralyzed mutants lacking a neuronal Gas pathway into hyperactive animals with coordinated locomotion. Our genetic analysis suggests that high energy light activates a pathway that bisects the network downstream of the Gas pathway but upstream of the synaptic vesicle priming machinery. Through a large forward genetic screen, we have isolated 21 Lite mutants defective in this response. We propose to use these mutants to investigate the molecular basis of the presynaptic light response, and thus obtain clues about the molecular targets of the UNC-31/ Gs pathway. Aims 3 and 4 use forward genetic approaches to identify the signals that control activation of the neuronal Gas pathway. To investigate the mutants in Aims 2-4, we first map the mutation and identify the gene that is mutated. We then apply a set of strategies, including genetic pathway analysis, site-of-action studies, electrophysiological and behavioral assays, and immunolocalization experiments, to determine the specific role of each protein in the network.
Relevance: The pathways of the synaptic signaling network are found in all animals, from worms to humans. Studies in model organisms such as worms and flies suggest that all behavior, learning, and memory formation occurs through the pathways of this network. However, the connection between the synaptic signaling network pathways and the control of behavior remains unclear. The experiments in this proposal will drive the discovery of critical missing links that are necessary to decipher the underlying logic of the network. Basic insights from our research should provide important clues and drug targets for human neural disorders such as behavioral and psychiatric disorders, depression, hyperactivity, and memory disorders.
描述(由申请人提供): 项目摘要:本研究的目标是通过识别控制突触活动的信号通路来弥合突触功能和行为控制之间的差距。我们对模式生物秀丽隐杆线虫的研究表明,3 个主要 Ga 通路的综合活动控制突触活动以产生运动行为。在这个突触信号网络中,神经元 Gccs 通路是突触功能和行为之间特别重要但人们知之甚少的联系。尽管对多种模式生物进行了多年的研究,我们仍然不明白为什么缺乏神经元气体通路的动物会瘫痪。该提案采用 3 种方法来研究神经元气体通路在行为执行过程中的核心目的。目标 1 询问气体通路是否以及如何影响各种突触小泡池,包括新发现的靠近活性区的膜接触小泡池。目标 2 扩展了我们的惊人发现,即高能光可将缺乏神经元气体通路的瘫痪突变体转化为具有协调运动的过度活跃动物。我们的遗传分析表明,高能光激活一条通路,该通路将气体通路下游但突触小泡启动机制上游的网络一分为二。通过大规模的正向遗传筛选,我们分离出了 21 个在这种反应中存在缺陷的 Lite 突变体。我们建议利用这些突变体来研究突触前光反应的分子基础,从而获得有关UNC-31/Gs通路分子靶点的线索。目标 3 和 4 使用正向遗传方法来识别控制神经元 Gas 通路激活的信号。为了研究目标 2-4 中的突变体,我们首先绘制突变图并识别突变的基因。然后,我们应用一系列策略,包括遗传途径分析、作用位点研究、电生理学和行为分析以及免疫定位实验,来确定网络中每种蛋白质的具体作用。
相关性:突触信号网络的通路存在于从蠕虫到人类的所有动物中。对蠕虫和苍蝇等模式生物的研究表明,所有行为、学习和记忆形成都是通过该网络的途径发生的。然而,突触信号网络通路与行为控制之间的联系仍不清楚。该提案中的实验将推动发现关键缺失的链接,这些链接对于破译网络的底层逻辑是必要的。我们研究的基本见解应该为人类神经疾病(例如行为和精神疾病、抑郁症、多动症和记忆障碍)提供重要线索和药物靶点。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENNETH George MILLER其他文献
KENNETH George MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENNETH George MILLER', 18)}}的其他基金
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
6539188 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
7597064 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
7777357 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
6901801 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
6608621 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
6758671 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
8641383 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
8450775 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
8296190 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
8827369 - 财政年份:2001
- 资助金额:
$ 31万 - 项目类别:
相似国自然基金
孔隙水对页岩气吸附-解析的影响机制研究:核磁共振与同位素联合约束
- 批准号:
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:
生物质炭施加对土壤微界面镉铅竞争吸附和同步固定的影响机制
- 批准号:42307017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
深层页岩有机纳米孔隙壁面形变对流体吸附和扩散的影响机理研究
- 批准号:52306096
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
生物炭源DOM-针铁矿晶面互馈对砷吸附与转化的影响机制
- 批准号:42307278
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多糖-纳米硒与黏蛋白非共价诱导的吸附模式对其跨肠黏液层渗透行为的影响机制
- 批准号:32302073
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
The immunogenicity and pathogenicity of HLA-DQ in solid organ transplantation
HLA-DQ在实体器官移植中的免疫原性和致病性
- 批准号:
10658665 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Immunotherapeutic nanoparticles: Implications for the treatment of tuberculosis and HIV
免疫治疗纳米粒子:对结核病和艾滋病毒治疗的影响
- 批准号:
10757507 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Engineered DNA-particles to model immune events in systemic lupus erythematosus
工程 DNA 颗粒模拟系统性红斑狼疮的免疫事件
- 批准号:
10644574 - 财政年份:2023
- 资助金额:
$ 31万 - 项目类别:
Columbia University and Northern Plains Partnership for the Superfund Research Program
哥伦比亚大学和北部平原超级基金研究计划合作伙伴关系
- 批准号:
10707887 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别:
Columbia University and Northern Plains Partnership for the Superfund Research Program
哥伦比亚大学和北部平原超级基金研究计划合作伙伴关系
- 批准号:
10797600 - 财政年份:2022
- 资助金额:
$ 31万 - 项目类别: