Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
基本信息
- 批准号:7777357
- 负责人:
- 金额:$ 32.27万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2001
- 资助国家:美国
- 起止时间:2001-08-17 至 2012-03-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAnimal ModelAnimalsBehaviorBehavior ControlBehavioralBehavioral AssayCaenorhabditis elegansCholinergic ReceptorsConflict (Psychology)DataDense Core VesicleDiseaseDissectionDrug Delivery SystemsFundingGasesGenesGeneticGenetic ScreeningGoalsHumanHyperactive behaviorImageImaging technologyLearningLifeLightLinkLocomotionLogicMapsMediatingMembraneMemoryMemory DisordersMental DepressionMental disordersModelingMolecularMolecular TargetMuscleMutateMutationNeuronsParalysedPathway AnalysisPathway interactionsProcessProteinsRegulationResearchResearch PersonnelRoleSignal PathwaySignal TransductionSignaling ProteinSiteStudy SectionStudy modelsSynapsesSynaptic TransmissionSynaptic VesiclesTestingVesicleWorkbasedesignflygenetic analysisinsightmutantpostsynapticpresynapticprogramsreceptorrelating to nervous systemresearch studyresponsesynaptic function
项目摘要
DESCRIPTION (provided by applicant): Project Summary: The goal of this research is to bridge the gap between synaptic function and the control of behavior by identifying the signaling pathways that control synaptic activity. Our studies of the model organism C. elegans have shown that the integrated activities of 3 major Ga pathways control synaptic activity to produce the locomotion behavior. Within this synaptic signaling network, the neuronal Gccs pathway is an especially critical but poorly understood link between synaptic function and behavior. Despite years of research in multiple model organisms, we do not understand why animals lacking a neuronal Gas pathway are paralyzed. This proposal takes 3 approaches to investigate the core purpose of the neuronal Gas pathway during the execution of behaviors. Aim 1 asks whether and how the Gas pathway affects various synaptic vesicle pools, including a newly discovered pool of membrane contacting vesicles next to the active zone. Aim 2 expands on our startling discovery that high energy light transforms paralyzed mutants lacking a neuronal Gas pathway into hyperactive animals with coordinated locomotion. Our genetic analysis suggests that high energy light activates a pathway that bisects the network downstream of the Gas pathway but upstream of the synaptic vesicle priming machinery. Through a large forward genetic screen, we have isolated 21 Lite mutants defective in this response. We propose to use these mutants to investigate the molecular basis of the presynaptic light response, and thus obtain clues about the molecular targets of the UNC-31/ Gs pathway. Aims 3 and 4 use forward genetic approaches to identify the signals that control activation of the neuronal Gas pathway. To investigate the mutants in Aims 2-4, we first map the mutation and identify the gene that is mutated. We then apply a set of strategies, including genetic pathway analysis, site-of-action studies, electrophysiological and behavioral assays, and immunolocalization experiments, to determine the specific role of each protein in the network.
Relevance: The pathways of the synaptic signaling network are found in all animals, from worms to humans. Studies in model organisms such as worms and flies suggest that all behavior, learning, and memory formation occurs through the pathways of this network. However, the connection between the synaptic signaling network pathways and the control of behavior remains unclear. The experiments in this proposal will drive the discovery of critical missing links that are necessary to decipher the underlying logic of the network. Basic insights from our research should provide important clues and drug targets for human neural disorders such as behavioral and psychiatric disorders, depression, hyperactivity, and memory disorders.
描述(由申请人提供):项目摘要:这项研究的目的是通过识别控制突触活动的信号传导途径来弥合突触功能与控制行为之间的差距。我们对秀丽隐杆线虫模型的研究表明,3个主要GA途径的综合活性控制着突触活动以产生运动行为。在此突触信号网络中,神经元GCC途径是突触功能与行为之间的特别关键但知之甚少的联系。尽管在多种模型生物中进行了多年的研究,但我们不明白为什么缺乏神经元气体途径的动物会瘫痪。该建议采用3种方法来研究行为执行期间神经元气体途径的核心目的。 AIM 1询问气体路径是否以及如何影响各种突触囊泡池,包括新发现的膜池,接触活动区域旁边的囊泡。 AIM 2扩大了我们令人震惊的发现,即高能量光会转化缺乏神经元气体途径的瘫痪突变体进入具有协调的运动的多动动物。我们的遗传分析表明,高能光激活了一条途径,该途径将气体途径下游的网络划分为一分为二,但突触囊泡启动器械的上游。通过大型的正向遗传筛选,我们在此反应中分离了21个Lite突变体。我们建议使用这些突变体研究突触前光反应的分子基础,从而获得有关UNC-31/ GS途径的分子靶标的线索。 AIMS 3和4使用正向遗传方法来识别控制神经元气体途径激活的信号。为了研究目标2-4中的突变体,我们首先绘制突变并确定突变的基因。然后,我们采用一组策略,包括遗传途径分析,行动现场研究,电生理和行为分析以及免疫定位实验,以确定每种蛋白质在网络中的特定作用。
相关性:从蠕虫到人类,在所有动物中都发现突触信号网络的途径。诸如蠕虫和苍蝇等模型生物的研究表明,所有行为,学习和记忆形成都是通过该网络的途径进行的。但是,突触信号网络通路和行为控制之间的连接尚不清楚。该提案中的实验将推动发现关键缺失链接,这些链接是破译网络的基础逻辑所必需的。我们研究的基本见解应为人类神经疾病(例如行为和精神疾病,抑郁症,多动症和记忆障碍)提供重要的线索和药物目标。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KENNETH George MILLER其他文献
KENNETH George MILLER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KENNETH George MILLER', 18)}}的其他基金
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
6539188 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
7597064 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
6608621 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
6758671 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
6901801 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
8450775 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
8641383 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
8296190 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
8827369 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
Signaling Pathways that Regulate Synaptic Transmission
调节突触传递的信号通路
- 批准号:
7261797 - 财政年份:2001
- 资助金额:
$ 32.27万 - 项目类别:
相似国自然基金
肾—骨应答调控骨骼VDR/RXR对糖尿病肾病动物模型FGF23分泌的影响及中药的干预作用
- 批准号:82074395
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
基于细胞自噬调控的苦参碱对多囊肾小鼠动物模型肾囊肿形成的影响和机制研究
- 批准号:
- 批准年份:2019
- 资助金额:33 万元
- 项目类别:地区科学基金项目
NRSF表达水平对抑郁模型小鼠行为的影响及其分子机制研究
- 批准号:81801333
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
靶向诱导merlin/p53协同性亚细胞穿梭对听神经瘤在体生长的影响
- 批准号:81800898
- 批准年份:2018
- 资助金额:21.0 万元
- 项目类别:青年科学基金项目
伪狂犬病病毒激活三叉神经节细胞对其NF-кB和PI3K/Akt信号转导通路影响的分子机制研究
- 批准号:31860716
- 批准年份:2018
- 资助金额:39.0 万元
- 项目类别:地区科学基金项目
相似海外基金
Endothelial Cell Reprogramming in Familial Intracranial Aneurysm
家族性颅内动脉瘤的内皮细胞重编程
- 批准号:
10595404 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别:
Dravet Syndrome Anti-Epileptic Control by Targeting GIRK Channels
通过针对 GIRK 通道进行 Dravet 综合征抗癫痫控制
- 批准号:
10638439 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别:
Novel application of pharmaceutical AMD3100 to reduce risk in opioid use disorder: investigations of a causal relationship between CXCR4 expression and addiction vulnerability
药物 AMD3100 降低阿片类药物使用障碍风险的新应用:CXCR4 表达与成瘾脆弱性之间因果关系的研究
- 批准号:
10678062 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别:
Mechanisms of Metal Ion Homeostasis of Oral Streptococci
口腔链球菌金属离子稳态机制
- 批准号:
10680956 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别:
Design and testing of a novel circumesophageal cuff for chronic bilateral subdiaphragmatic vagal nerve stimulation (sVNS)
用于慢性双侧膈下迷走神经刺激(sVNS)的新型环食管套囊的设计和测试
- 批准号:
10702126 - 财政年份:2023
- 资助金额:
$ 32.27万 - 项目类别: