Explainable Population Estimation Using Deep Learning from Satellite Imagery
使用卫星图像深度学习进行可解释的人口估计
基本信息
- 批准号:2890100
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
More than one-third of the Sustainable Development Goals (SDGs) indicators established by the United Nations (UN) are defined in terms of total population or a specific demographic sub-population [1]. Up-to-date population information of a region is crucial for decision making including access to services, distribution of vaccinations, disaster relief, and many others. Traditional population data, such as census, are not adequate for this purpose since censuses are typically conducted decennially and countries with the greatest need for up-to-date population counts conduct them even less frequently. Population estimation using alternative data sources such as satellite imagery has received significant attention in the recent years. Both census-dependent [2] and census-independent [3] approaches have been explored with some success, and many of these methods have utilized advanced image analysis methods such as deep convolutional neural networks with promising results. This project will develop these methods further, to produce sustainable, interpretable and reliable machine learning models estimating population more effectively. It will involve utilizing contextual information, both spatial and temporal, integrating satellite imagery at multiple resolutions with publicly available data sources such as land cover map, etc., combining from census, surveys and microcensus data, and explaining the decisions made by these models to the end-users.The aim of the project is to develop sustainable, interpretable, and reliable machine learning models to effectively estimate the population of an area using satellite imagery and survey information. The project will investigate the following research questions: (1) Can contextual neighbourhood information, both short-range and long-range, improve population estimates by understanding the characteristics of the surrounding regions? (2) Can information from census, surveys, and micro-census be combined to track population reliably over time? (3) Can data from different sources and different resolutions be combined to acquire complementary information about an area? (4) Does uncertainty/bias differ in sparsely populated rural areas vary compared to densely populated urban areas? and (5) Can estimated population and associated uncertainty be explained to policymakers effectively?MethodologyThe project will incorporate satellite imagery of different resolutions and survey data using computer vision models, deep learning architecture and explainable model constructs to estimate population of a region.
联合国(联合国)建立的可持续发展目标(SDG)指标的三分之一以上是根据人口总数或特定的人群亚人口的定义[1]。一个地区的最新人口信息对于决策至关重要,包括获得服务,疫苗接种,救灾以及许多其他地区的分配。传统人口数据(例如人口普查)不足以满足此目的,因为普查通常是在十年期间进行的,并且对最新人口的需求最高的国家的频率降低了。近年来,使用替代数据来源(例如卫星图像)进行了估算。已经探索了普查依赖性[2]和与人口普查无关的[3]方法,并获得了一些成功,其中许多方法都利用了高级图像分析方法,例如深卷积神经网络,并具有令人鼓舞的结果。该项目将进一步开发这些方法,以更有效地生成可持续,可解释和可靠的机器学习模型。它将涉及利用空间和时间上的上下文信息,将卫星图像与可公开可用的数据源相结合,例如土地覆盖地图等,结合了人口普查,调查和微观的数据,并将这些模型的决策解释为最终的方法。 信息。该项目将调查以下研究问题:(1)通过了解周围地区的特征来改善人口估计的上下文邻里信息可以改善人口估计吗? (2)可以合并来自人口普查,调查和微观周期的信息,以随着时间的推移可靠地跟踪人口吗? (3)可以合并来自不同来源和不同分辨率的数据以获取有关区域的互补信息吗? (4)与人口稠密的城市地区相比,人口稠密的农村地区的不确定性/偏见是否有所不同? (5)可以有效地向决策者解释估计的人群和相关的不确定性吗?
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
空间均衡视角下的外来人口市民化研究:事实描述、模型估计和政策讨论
- 批准号:72373054
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
顾及个体时空行为的人口分布动态模拟与估计
- 批准号:42301527
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
多源数据支持的特大城市高时空分辨率人口分布估计与人口流动感知
- 批准号:
- 批准年份:2020
- 资助金额:261 万元
- 项目类别:联合基金项目
基于社交网络数据的人口面插值模型研究
- 批准号:41501423
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
人口结构、终端消费影响下的中国碳排放峰值估计
- 批准号:71303212
- 批准年份:2013
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Multi-ethnic risk prediction for complex human diseases integrating multi-source genetic and non-genetic information
整合多源遗传与非遗传信息的人类复杂疾病多民族风险预测
- 批准号:
10754773 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Electrocardiogram-based deep learning and decision analysis to improve atrial fibrillation risk estimation
基于心电图的深度学习和决策分析改善房颤风险评估
- 批准号:
10722762 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Opportunistic Atherosclerotic Cardiovascular Disease Risk Estimation at Abdominal CTs with Robust and Unbiased Deep Learning
通过稳健且公正的深度学习进行腹部 CT 机会性动脉粥样硬化性心血管疾病风险评估
- 批准号:
10636536 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Enabling the Assessment of Fetal Brain Development and Degeneration with Machine Learning
通过机器学习评估胎儿大脑发育和退化
- 批准号:
10659817 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Mobile technologies to screen for prediabetes and type 2 diabetes in asymptomatic adults
用于筛查无症状成人糖尿病前期和 2 型糖尿病的移动技术
- 批准号:
10660714 - 财政年份:2023
- 资助金额:
-- - 项目类别: