3D Breast Anatomy Analysis in Cancer Treatment Planning and Outcome Assessment

癌症治疗计划和结果评估中的 3D 乳房解剖分析

基本信息

  • 批准号:
    7219169
  • 负责人:
  • 金额:
    $ 12.53万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2007
  • 资助国家:
    美国
  • 起止时间:
    2007-09-15 至 2009-05-31
  • 项目状态:
    已结题

项目摘要

DESCRIPTION (provided by applicant): Breast cancer is the second leading cause of cancer death in American women. Breast Reconstruction (BR) surgery is an important component of the breast cancer treatment process. It is the surgical procedure used to rebuild breast tissue that has been removed due to cancer surgery. Most importantly, BR surgery is integral to improving the cancer patient's quality of life. However, planning and evaluation of the surgery are done subjectively, and the result is not always satisfactory. We propose to develop tools that will aid surgeons with pre-operative planning and post-operative outcome evaluation. They will also help breast cancer survivors make informed decisions about their treatment choices, by facilitating surgeon-patient communications. Objective outcome analysis will allow more concrete communication with the patient, who can then calibrate her expectations and be more comfortable with her treatment choices. Alterations in appearance (or loss) of the breast have significant psychological and sexual implications in cancer patients. Having recently experienced the trauma and stress associated with the diagnosis and treatment of a life-threatening illness, patients hope to relieve some of the stress and rebuild a positive body image. They hope to achieve a BR result that is attractive and natural looking. Most women who choose BR do so to restore their femininity, image, and body integrity, all of which have been altered negatively by breast cancer therapy. However, there is no information available from an objective analysis of aesthetic outcomes to facilitate the patient's decision making on a procedure that will permanently alter the appearance of her breast. Standards for BR have evolved in the past decade, and patients and surgeons alike expect, symmetrical and natural looking breasts. Surgeons rely on their personal experience and on subjective visual assessment skills to achieve these results. Similarly, aesthetic outcome assessment methods, following surgery, are rather subjective, and are based on observer evaluation of physical changes in breast morphology and symmetry. To date, no consensus exists on how to assess the aesthetic result following BR. With the recent developments in three-dimensional (3D) imaging, there is now an opportunity to develop diagnostic tools that permit 3D treatment planning and objective assessment of post-operative results. The proposed study develops a method for quantitatively describing breast aesthetics. The method will objectively detect relevant changes in breast appearance, making it possible to compare aesthetic outcome between different treatment modalities. A practical technique for quantitative assessment of breast appearance would improve breast cancer care in several ways. Key applications include enabling personalized, evidence-based medicine, surgical planning, setting fair charges, and surgery education. Breast cancer is the most common life-threatening malignancy in women. Treatment advances and early detection have resulted in decreased mortality from breast cancer despite a steadily rising incidence in the United States between 1990 and 2002. Encouraged by this trend and other evidence of progress, the National Cancer Institute (NCI) has issued a challenge goal to eliminate suffering and death from cancer by the year 2015. Achieving this goal for women requires addressing the psychosocial morbidity caused by physical deformities of the breast that result from cancer treatment. A major step towards minimizing treatment-related deformities is to improve the surgical techniques of breast reconstruction. Developing quantitative tools for assessing the aesthetic outcome of BR is thus a significant step in the right direction. The goal of this Phase I study is to develop software tools that would aid the surgeon in quantifying and interpreting 3D data in a meaningful and clinically relevant fashion. 3D measurements would also be invaluable for relating patient and surgical variables meaningfully to aesthetic outcomes, and for comparing the outcomes of different kinds of breast cancer treatments (e.g., different reconstruction procedures).
描述(由申请人提供):乳腺癌是美国女性癌症死亡的第二大原因。乳房重建(BR)手术是乳腺癌治疗过程的重要组成部分。这是用于重建因癌症手术而被切除的乳房组织的外科手术。最重要的是,BR 手术对于改善癌症患者的生活质量至关重要。然而,手术的计划和评估都是主观的,结果并不总是令人满意。我们建议开发工具来帮助外科医生进行术前规划和术后结果评估。他们还将通过促进外科医生与患者的沟通,帮助乳腺癌幸存者就其治疗选择做出明智的决定。客观的结果分析将允许与患者进行更具体的沟通,然后患者可以调整她的期望并对她的治疗选择更加满意。乳房外观的改变(或丧失)对癌症患者具有显着的心理和性影响。最近经历了与危及生命的疾病的诊断和治疗相关的创伤和压力后,患者希望减轻一些压力并重建积极的身体形象。他们希望获得有吸引力且自然的 BR 结果。大多数选择 BR 的女性这样做是为了恢复她们的女性气质、形象和身体完整性,所有这些都因乳腺癌治疗而发生了负面改变。然而,没有从美学结果的客观分析中获得任何信息来帮助患者做出永久改变乳房外观的手术决策。 BR 标准在过去十年中不断发展,患者和外科医生都期望拥有对称且自然的乳房。外科医生依靠他们的个人经验和主观视觉评估技能来实现这些结果。同样,手术后的美学结果评估方法相当主观,并且基于观察者对乳房形态和对称性物理变化的评估。迄今为止,对于如何评估 BR 后的美学效果尚未达成共识。随着三维 (3D) 成像的最新发展,现在有机会开发允许 3D 治疗计划和客观评估术后结果的诊断工具。拟议的研究开发了一种定量描述乳房美学的方法。该方法将客观地检测乳房外观的相关变化,从而可以比较不同治疗方式之间的美学结果。定量评估乳房外观的实用技术将从多个方面改善乳腺癌护理。主要应用包括实现个性化、循证医学、手术规划、设定公平收费和手术教育。乳腺癌是女性最常见的危及生命的恶性肿瘤。尽管 1990 年至 2002 年间美国乳腺癌发病率稳步上升,但治疗方法的进步和早期检测已导致乳腺癌死亡率下降。受这一趋势和其他进展证据的鼓舞,美国国家癌症研究所 (NCI) 发布了一项挑战目标:到 2015 年消除癌症带来的痛苦和死亡。为女性实现这一目标需要解决因癌症治疗导致的乳房身体畸形所造成的社会心理发病率。减少治疗相关畸形的一个重要步骤是改进乳房重建的手术技术。因此,开发用于评估 BR 美学效果的定量工具是朝着正确方向迈出的重要一步。这项第一阶段研究的目标是开发软件工具,帮助外科医生以有意义且与临床相关的方式量化和解释 3D 数据。 3D 测量对于将患者和手术变量与美学结果有意义地联系起来,以及比较不同类型乳腺癌治疗(例如不同的重建程序)的结果也非常有价值。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Automated Identification of Fiducial Points on 3D Torso Images.
Validation of stereophotogrammetry of the human torso.
  • DOI:
    10.4137/bcbcr.s6352
  • 发表时间:
    2011-02-15
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lee J;Kawale M;Merchant FA;Weston J;Fingeret MC;Ladewig D;Reece GP;Crosby MA;Beahm EK;Markey MK
  • 通讯作者:
    Markey MK
3D Symmetry Measure Invariant to Subject Pose During Image Acquisition.
  • DOI:
    10.4137/bcbcr.s7140
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kawale M;Lee J;Leung SY;Fingeret MC;Reece GP;Crosby MA;Beahm EK;Markey MK;Merchant FA
  • 通讯作者:
    Merchant FA
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Fatima Aziz Merchant其他文献

Fatima Aziz Merchant的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Fatima Aziz Merchant', 18)}}的其他基金

3D Image Analysis Software for Breast Reconstruction Surgical Planning, Outcome Assessment & Clinical Consultation
用于乳房重建手术规划、结果评估的 3D 图像分析软件
  • 批准号:
    10484568
  • 财政年份:
    2022
  • 资助金额:
    $ 12.53万
  • 项目类别:
3D Image Analysis Software for Breast Reconstruction Surgical Planning, Outcome Assessment & Clinical Consultation
用于乳房重建手术规划、结果评估的 3D 图像分析软件
  • 批准号:
    10589908
  • 财政年份:
    2022
  • 资助金额:
    $ 12.53万
  • 项目类别:
RCMI Research Infrastructure Core
RCMI 研究基础设施核心
  • 批准号:
    10259789
  • 财政年份:
    2020
  • 资助金额:
    $ 12.53万
  • 项目类别:
RCMI Research Infrastructure Core
RCMI 研究基础设施核心
  • 批准号:
    10381564
  • 财政年份:
    2020
  • 资助金额:
    $ 12.53万
  • 项目类别:
RCMI Research Infrastructure Core
RCMI 研究基础设施核心
  • 批准号:
    10644989
  • 财政年份:
    2020
  • 资助金额:
    $ 12.53万
  • 项目类别:
Improved Automated Urinalysis
改进的自动化尿液分析
  • 批准号:
    7270783
  • 财政年份:
    2007
  • 资助金额:
    $ 12.53万
  • 项目类别:
A Virtual Reality Environment for Genomic Data Visualization
基因组数据可视化的虚拟现实环境
  • 批准号:
    7218900
  • 财政年份:
    2007
  • 资助金额:
    $ 12.53万
  • 项目类别:
Low Cost Automated Urinalysis using Spectral Data
使用光谱数据进行低成本自动化尿液分析
  • 批准号:
    6883492
  • 财政年份:
    2005
  • 资助金额:
    $ 12.53万
  • 项目类别:
Automated Detection of Gene Duplications or Deletions
自动检测基因重复或缺失
  • 批准号:
    6874478
  • 财政年份:
    2000
  • 资助金额:
    $ 12.53万
  • 项目类别:
Automated Detection of Gene Duplications or Deletions
自动检测基因重复或缺失
  • 批准号:
    6742066
  • 财政年份:
    2000
  • 资助金额:
    $ 12.53万
  • 项目类别:

相似国自然基金

时空序列驱动的神经形态视觉目标识别算法研究
  • 批准号:
    61906126
  • 批准年份:
    2019
  • 资助金额:
    24.0 万元
  • 项目类别:
    青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
  • 批准号:
    41901325
  • 批准年份:
    2019
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
  • 批准号:
    61802133
  • 批准年份:
    2018
  • 资助金额:
    23.0 万元
  • 项目类别:
    青年科学基金项目
针对内存攻击对象的内存安全防御技术研究
  • 批准号:
    61802432
  • 批准年份:
    2018
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
  • 批准号:
    61872252
  • 批准年份:
    2018
  • 资助金额:
    64.0 万元
  • 项目类别:
    面上项目

相似海外基金

Bayesian Statistical Learning for Robust and Generalizable Causal Inferences in Alzheimer Disease and Related Disorders Research
贝叶斯统计学习在阿尔茨海默病和相关疾病研究中进行稳健且可推广的因果推论
  • 批准号:
    10590913
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
Deep Learning Based Natural Language Processing Markers of Anxiety and Depression
基于深度学习的自然语言处理的焦虑和抑郁标记
  • 批准号:
    10723819
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
Predicting firearm suicide in military veterans outside the VA health system using linked civilian electronic health record data
使用链接的民用电子健康记录数据预测退伍军人管理局卫生系统外退伍军人的枪支自杀
  • 批准号:
    10655968
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
Fair risk profiles and predictive models for outcomes of obstructive sleep apnea through electronic medical record data
通过电子病历数据对阻塞性睡眠呼吸暂停结果进行公平的风险概况和预测模型
  • 批准号:
    10678108
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
Mining minority enriched AllofUs data for innovative ethnic specific risk prediction modeling
挖掘少数族裔丰富的 AllofUs 数据,用于创新的种族特定风险预测模型
  • 批准号:
    10798514
  • 财政年份:
    2023
  • 资助金额:
    $ 12.53万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了