Image-Based Stratification and Therapy Selection for Atrial Fibrillation Patients Using Deep Learning
使用深度学习对心房颤动患者进行基于图像的分层和治疗选择
基本信息
- 批准号:2886591
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Aims of the Project: Develop image-based deep learning models for stratification of atrial fibrillation (AF) patients.Apply the models to identify AF patients who would not respond to catheter ablation therapy.Apply the models to identify AF patients with high risks of stroke who require anticoagulation.Validate predictions using available data on clinical outcomes and follow-up in patients.Atrial fibrillation (AF), the most common arrhythmia, affects over 50 million people worldwide and accounts for a third of ischaemic strokes. Its diagnosis and management pose a substantial burden on healthcare systems, warranting efficient clinical approaches for stratifying AF patient therapy selection and stroke risks. However, even advanced AF therapies, such as catheter ablation (CA), are highly empirical and have poor long-term outcomes, with arrhythmia recurring in about half of the patients. Clinical approaches to stroke risk assessment are also empirical, based on patient characteristics (such as age, weight) and comorbidities, and are mostly effective for high-risk AF patients. This warrants the development of novel, reliable approaches to AF patient stratification that can account for anatomical and functional metrics from imaging and clinical exams.Image-based assessments are increasingly used to move away from empirical diagnosis and therapy and improve patient outcomes. Thus, fibrotic tissue identified in the left atrium (LA) using MRI has been used as both a biomarker of AF severity and a target for CA therapy. Stroke risk scores may also be improved by multi-modal cardiac imaging that capture LA shape, motion or blood flow, since all these characteristics are linked with the likelihood of blood coagulation and thrombus formation. However, even advanced imaging systems provide limited information on key factors underlying AF sustenance and AF-related thrombogenesis, and the success of image-based stratification of AF patients remains suboptimal. Moreover, analysis of large volumes of patient imaging data requires substantial human and computational resources, which hinder their application in a clinical setting.The application of deep learning (DL) can help overcome such limitations: (i) DL models can be trained using data from multiple sources, including patient imaging, image-based modelling, clinical records and ex-vivo experiments; (ii) once trained, DL models can provide a fast tool to support clinical decision-making based on available patient data. Therefore, this project will develop novel DL models trained on a combination of imaging, modelling and clinical data from AF patients. Once trained, the models will provide fast and flexible tools to identify 1) AF patients who are unlikely to respond to CA therapy and 2) AF patients with high thrombogenic risks who require anticoagulation. These predictions will be validated against clinical follow-up data available from the patients.
Aims of the Project: Develop image-based deep learning models for stratification of atrial fibrillation (AF) patients.Apply the models to identify AF patients who would not respond to catheter ablation therapy.Apply the models to identify AF patients with high risks of stroke who require anticoagulation.Validate predictions using available data on clinical outcomes and follow-up in patients.Atrial fibrillation (AF), the most common arrhythmia, affects over 50 million people全球,占缺血性中风的三分之一。它的诊断和管理对医疗保健系统造成了重大负担,保证有效的临床方法来分层AF患者治疗选择和中风风险。但是,即使是高级AF疗法,例如导管消融(CA),也具有高度的经验性,长期结局差,大约一半的患者也会反复出现心律不齐。基于患者特征(例如年龄,体重)和合并症,对中风风险评估的临床方法也是经验性的,并且对高危AF患者最有效。这需要开发新颖,可靠的AF患者分层方法,这些方法可以解释来自成像和临床检查的解剖学和功能指标。基于图像的评估越来越多地用于摆脱经验诊断和治疗,并改善患者的结果。因此,使用MRI在左心房(LA)中鉴定出的纤维化组织已被用作AF严重程度的生物标志物,又是CA治疗的靶标。捕获LA形状,运动或血流的多模式心脏成像也可以改善中风风险评分,因为所有这些特征都与血液凝结和血栓形成的可能性有关。但是,即使是先进的成像系统也提供了有关自动房屋维持和与AF相关的血栓形成基础的关键因素的有限信息,而基于图像的AF患者基于图像的分层的成功仍然是最佳的。此外,对大量患者成像数据的分析需要大量的人类和计算资源,这阻碍了它们在临床环境中的应用。深度学习的应用(DL)可以帮助克服此类限制:(i)可以使用来自多个来源的数据来培训DL模型,包括患者成像,基于图像的建模,临床记录和Ex-Vivo实验; (ii)一旦受过培训,DL模型就可以提供基于可用患者数据的临床决策的快速工具。因此,该项目将开发新型的DL模型,该模型以AF患者的成像,建模和临床数据的结合进行了培训。一旦受过培训,这些模型将提供快速,灵活的工具来识别1)不太可能对CA治疗做出反应的AF患者; 2)具有需要抗凝治疗的高血栓形成风险的AF患者。这些预测将根据患者获得的临床随访数据进行验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Metal nanoparticles entrapped in metal matrices.
- DOI:
10.1039/d1na00315a - 发表时间:
2021-07-27 - 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
Stunting as a Risk Factor of Soil-Transmitted Helminthiasis in Children: A Literature Review.
- DOI:
10.1155/2022/8929025 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aspirin use is associated with decreased inpatient mortality in patients with COVID-19: A meta-analysis.
- DOI:
10.1016/j.ahjo.2022.100191 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
- DOI:
10.1007/978-3-662-55754-9_2 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
- DOI:
10.3969/j.issn.1674-764x.2010.02.010 - 发表时间:
2010-06 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于记忆的不变图像特征学习方法研究
- 批准号:61502195
- 批准年份:2015
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于改进有限混合模型的图像/视频分割算法研究
- 批准号:61572257
- 批准年份:2015
- 资助金额:64.0 万元
- 项目类别:面上项目
基于分层与或图模型的光学遥感图像场景理解方法研究
- 批准号:61501434
- 批准年份:2015
- 资助金额:19.0 万元
- 项目类别:青年科学基金项目
基于结构形态特征和力学因素的颈动脉粥样硬化危险分层定量研究
- 批准号:11302195
- 批准年份:2013
- 资助金额:28.0 万元
- 项目类别:青年科学基金项目
基于NAM和生物视知觉的医学图像分割算法研究
- 批准号:61300134
- 批准年份:2013
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
相似海外基金
CT imaging-based prediction and stratification of motor and cognitive behavior after stroke for targeted game-based robot therapy: Diversity Supplement
基于 CT 成像的中风后运动和认知行为的预测和分层,用于基于游戏的有针对性的机器人治疗:多样性补充
- 批准号:
10765218 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of cell free messenger RNA-based non-invasive diagnostic biomarker for Alzheimer's Disease
开发基于无细胞信使 RNA 的阿尔茨海默病非侵入性诊断生物标志物
- 批准号:
10761661 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Discovering Centrally Linked Peripheral Molecular Signatures of Alzheimer's Disease
发现阿尔茨海默病的中心连锁外周分子特征
- 批准号:
10555727 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Assessment of a Radiomics-Based Computer-Aided Diagnosis Tool for Cancer Risk Stratification of Pulmonary Nodules
基于放射组学的计算机辅助诊断工具对肺结节癌症风险分层的评估
- 批准号:
10644765 - 财政年份:2023
- 资助金额:
-- - 项目类别: