Atomically Thin Photovoltaics

原子薄光伏

基本信息

  • 批准号:
    2748235
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Atomically Thin Solar Cells: Sustainability is a predominant idea in the energy sector to protect the planet going forward, with many countries including the U.K. setting "net-zero" carbon emission targets by 2050. Renewables are methods of energy generation which do not directly emit carbon-based greenhouse gases, these include: wind, hydropower, and solar power. The sun's energy can be harvested at no direct cost to the planet using a solar panel. This is a device which converts the energy from the sun's light to electricity. Solar cells, alternatively called photovoltaic (PV) cells are the units which make up solar panels. The efficiency of a PV cell quantifies how effective it converts energy from the light to electricity - current commercial solar panels based on silicon (Si) achieve ~25% efficiency, which is the industry's standard. Alternative materials to Si are explored so that they can be used where silicon's properties may restrict the applications of devices based upon them. For example, traditional PV cells suffer decreasing efficiency as they become thinner, typically not reduced below 0.1-0.4mm. These are made from Si and metals, rendering them heavy, non-flexible, and visible to the eye, restricting their applications. The alternative materials investigated in this project may be scaled down to just a few atoms in thickness (hence are called atomically thin), rendering them light, flexible, invisible to the eye and ~100,000 times thinner than Si devices. Imagine placing PV in new places like clothing, your phone, or coating buildings. Unfortunately, the best achieved efficiencies from atomically thin PV cells are comparably worse than Si at ~5-10%, but this may not be the ultimate factor for viability if they can be placed in new locations. PV cells only function under solar illumination which is not always available due to time of day or weather on Earth, therefore, they have always been explored for extra-terrestrial use to circumvent this. An important consideration for space applications is spacecraft launch costs, mainly depending on mass and volume. Atomically thin materials have several main advantages here due to their low mass and volume. They have been proven to withstand the harsh radiation found in space, and their flexibility would allow electricity generation on the body of the spacecraft. This could supplement the craft's existing solar panels, without increasing its volume. This may lead to high suitability for use in space. Aims: This project aims to increase the efficiency of atomically thin PV cells through the novel application of highly reflective mirrors to increase photon absorption, optimum material choices, and sizing of the cells. The feasibility of these devices for concentrator solar cells will be investigated which will bring another element of novelty. These are cells where the intensity of light is increased by focusing it upon the cell to achieve higher efficiency. This increased intensity may damage the cells, akin to fire starting due to light through a magnifying glass, therefore it must be shown that they are undamaged for to demonstrate their suitability. Methodology: The PV cells will be produced by cleaving apart the layers of materials known as transition metal dichalcogenides, and black phosphorus. This can be done until they are only one atomic layer thick because these materials' layers are only bound weakly. Layers of different materials can then be stacked on each other however you choose, analogous to how one stacks Lego, to produce new materials with specific properties. These devices can then have their thickness characterised by atomic force microscopy, and their chemical composition by Raman spectroscopy. Their efficiency is determined by measuring electrical current generated when the devices are illuminated by a solar light simulator, however a laser can be used to determine the response when specific positions on the device are illuminated.
原子上的太阳能电池:可持续性是能源行业的主要思想,可以保护行星前进,包括英国在2050年之前设定“净零”碳排放目标。可再生能源是能源发电的方法,它并非直接发射碳基温室气体,其中包括:风能,水力发电和太阳能电力。可以使用太阳能电池板以无直接成本收获太阳的能量。这是一种将能量从太阳的光转换为电力的设备。太阳能电池,也称为光伏(PV)电池是组成太阳能电池板的单元。 PV电池的效率量化了其将能量从光转换为电的有效性 - 基于硅(SI)的当前商业太阳能电池板达到了〜25%的效率,这是行业的标准。探索了SI的替代材料,以便可以在硅的性质可能限制基于设备的应用的情况下使用它们。例如,传统的PV细胞随着效率较薄而降低效率,通常不会降低低于0.1-0.4mm。这些是由SI和金属制成的,使它们变得沉重,不易于且对眼睛可见,从而限制了它们的应用。该项目中研究的替代材料的厚度可能只有几个原子(因此称为原子薄),使它们轻巧,柔性,看不见眼睛,比SI设备更薄。想象一下,将PV放在衣服,手机或涂料建筑物等新地方。不幸的是,在约5-10%的情况下,原子上薄的PV细胞的最佳效率比SI差,但如果可以将它们放置在新位置,这可能不是生存力的最终因素。 PV细胞仅在太阳照明下起作用,这并不总是由于一天中的时间或地球上的天气,因此,始终探索它们以供外物使用以绕过这一点。空间应用的一个重要考虑因素是航天器的发射成本,主要取决于质量和数量。由于质量低和体积,原子上薄的材料在这里具有几个主要优势。事实证明,它们可以承受在太空中发现的刺激性辐射,并且它们的灵活性将使航天器体内发电。这可以补充工艺品现有的太阳能电池板,而不会增加其体积。这可能会导致很高的适用性用于太空。 目的:该项目旨在通过高度反射镜的新应用来提高原子上薄的PV细胞的效率,以增加光子的吸收,最佳材料选择和细胞的尺寸。这些设备对集中太阳能电池的可行性将被研究,这将带来另一种新颖性。这些是通过将其集中在细胞上以达到更高效率的细胞来增加光强度的细胞。这种增加的强度可能会损坏细胞,类似于通过放大镜从光线开始的火,因此必须证明它们没有受到损害以证明其适合性。 方法论:PV细胞将通过分裂(称为过渡金属二分法元素和黑磷)的材料层来产生。这可以做到,直到它们仅是一个原子层厚,因为这些材料的层仅弱结合。然后可以将不同材料的层彼此堆叠在一起,但是您选择的是类似于一个堆叠乐高的材料,以生产具有特定特性的新材料。然后,这些设备可以具有原子力显微镜的厚度,并通过拉曼光谱法进行化学组成。它们的效率是通过测量通过太阳能模拟器照明设备时产生的电流来确定的,但是当点亮设备上的特定位置时,激光可用于确定响应。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
  • DOI:
    10.1038/s41598-023-40425-w
  • 发表时间:
    2023-08-16
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
  • DOI:
    10.1038/cddis.2011.59
  • 发表时间:
    2011-06-23
  • 期刊:
  • 影响因子:
    9
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

亚快速凝固铝合金薄带微观组织的脉冲电流调控与协同强韧化
  • 批准号:
    52371119
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
双参量同步监测的薄包层Ω形光纤LSPR-干涉传感器构建及机理研究
  • 批准号:
    62305235
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
面向高性能硅MOS量子比特应用的高κ薄栅二维电子气迁移率影响机制及提升研究
  • 批准号:
    12374076
  • 批准年份:
    2023
  • 资助金额:
    52.00 万元
  • 项目类别:
    面上项目
具有经典参数的薄的距离正则图的分类问题研究
  • 批准号:
    12371339
  • 批准年份:
    2023
  • 资助金额:
    44.00 万元
  • 项目类别:
    面上项目
T1000碳纤维/不锈钢极薄带纤维金属复合材料复杂服役环境下的动态力学性能和失效机理研究
  • 批准号:
    12302479
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Development of a high performance laminated transparent top-electrode for emerging thin-film photovoltaics
开发用于新兴薄膜光伏的高性能层压透明顶部电极
  • 批准号:
    EP/V002023/1
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
    Research Grant
Development of novel graphene based inks to replace toxic and scarce materials used in thin film photovoltaics
开发新型石墨烯墨水以替代薄膜光伏发电中使用的有毒和稀缺材料
  • 批准号:
    83213
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
    Collaborative R&D
Thin films for silicon-based tandem photovoltaics 1=Energy 2=Solar Technology
用于硅基串联光伏发电的薄膜 1=能源 2=太阳能技术
  • 批准号:
    2166291
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:
    Studentship
Ultra-thin III-V photovoltaics for space power applications
用于空间电力应用的超薄 III-V 光伏电池
  • 批准号:
    2104603
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of nanocarbon thin films for all-carbon photovoltaics
用于全碳光伏发电的纳米碳薄膜的开发
  • 批准号:
    17F17380
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for JSPS Fellows
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了