Materials Discovery in Charge Transfer Complexes for Thermoelectricity
热电电荷转移复合物中的材料发现
基本信息
- 批准号:2745853
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2022
- 资助国家:英国
- 起止时间:2022 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Thermoelectric devices are electronic chips that turn differences in heat into electricity and vice versa. Most people will have never heard of thermoelectric (TE) devices as they are used very little. Practical TE devices could generate green electricity and make refrigeration less polluting. This cant happen currently as room temperature thermoelectric materials are either too expensive or too inefficient. A 1.4% efficient TE material applied to the 40C waste steam generated by all UK thermal power plants in 2021 could have generated 5TWh of electricity per year, enough for 2 million, 8% of all, UK homes at a wholesale value of £900M per year (UK average price June 22 June 23). Organic TE materials are likely to reduce the cost of TE devices due to their atom abundance and low energy processing. Both negative and positive type (like the ends on a battery) TE materials are needed to make devices. Organic p-type materials have seen good progress, but n-types are much rarer, have lower performance, and are easily decomposed by oxidation in air. A recent discovery of a family of metal halide organic complexes with a generic structure M(II)Br2(Haloaniline)2 has reported high (2000-3900 S cm-1) electrical conductivity and power factors, a measure of TE performance (1500 3700 W m1 K2) an order of magnitude greater than the research benchmark of PEDOT:PSS polymer 200 W m1 K2.This new family's constituent atoms are all earth-abundant, comprised of Cu, Zn, Br, I, C and N.Currently, the processing solvent is toxic, but there is potential for developing safer and less environmentally harmful solvent methods. Crucially, this family reports high stability in air and water for year timescales experimentally and theoretically. And maximum operating temperatures between 100 - 200C and good performance one-fifth to half as good as the best materials available. This class of materials is underexplored as TE materials, and many questions about how to boost their performance remain. This project will help to develop methods for their production, discover new materials in the family and explore methods for tailoring their performance. The early goal will be to replicate the leading research results via vacuum drying. If this method reliably gives films that can be analysed, then a library of different organic molecules with different halide substituents and Pi-conjugated systems will be developed. These experiments will help us understand the molecule's effect on how we can make the materials better. If data generation is fast and reliable, the use of artificial intelligence could help us improve the materials. If the vacuum drying technique does not provide reliable deposition of high-quality films, then alternative drying methods will be investigated. Hot substrates to evaporate off the solvent, using a solvent that washes away the solvent but leaves the materials in place. Ambient temperature washing is favourable as it avoids thermal stress and has lower energy requirements. Cosolvent techniques may give finer control of the crystallisation. Once films are produced, they will be validated for homogeneity and thickness with Optical microscopy, Electron microscopy, and profilometry. The composition of the deposited films will be determined by grazing incidence x-ray diffraction. Previous studies have not included structural measurements of the cast films, only materials derived by mechanochemistry and crystallisation. Analysis of the cast film will reveal any differences. If possible, the materials will be cast onto the silicon nitride measurement chips of a thin film analyser. This system can give basic thermoelectric characterisation. This system's speed and high reliability will reduce uncertainty and time per sample compared to conventional measurements. If this system is unsuitable, methods will be developed using silica slides with thermally evaporated conductive tracks for 4 terminal measurements.
热电设备是电子芯片,将热量差异转化为电力,反之亦然。大多数人都不会听说过热电(TE)设备,因为它们的使用很少。实用的TE设备可能会产生绿色电力,并使制冷量减少污染。目前无法发生这种情况,因为室温热电材料要么太贵,要么太低效率。 2021年英国所有英国热电厂生成的40C废物蒸汽的效率1.4%,每年产生5TWH的电力,足以容纳200万,全部8%,英国房屋的批发价值为每年9亿英镑(英国平均价格平均价格)。有机TE材料由于其原子抽象和低能处理而可能会降低TE设备的成本。负类型和正类型(如电池上的末端)都需要TE材料来制造设备。有机P型材料的进展良好,但是N型的稀有性要较少,性能较低,并且很容易被空气中的氧化分解。 A recent discovery of a family of metal halide organic complexes with a generic structure M(II)Br2(Haloaniline)2 has reported high (2000-3900 S cm-1) electrical conductivity and power factors, a measure of TE performance (1500 3700 W m1 K2) an order of magnitude greater than the research benchmark of PEDOT:PSS polymer 200 W m1 K2.This new family's consistency atoms are all earth-abundant,由Cu,Zn,br,i,c和n.组成。目前,加工偿付能力是有毒的,但是有可能开发出更安全且对环境有害的溶液方法的潜力。十足的是,这个家庭在实验和理论上报告了一年的时间尺度的空气和水的稳定性。和最高的工作温度在100-200C之间,良好的性能五分之一到一半,与可用的最佳材料一样好。这类材料作为TE材料没有充满反感,并且有关如何提高其性能的许多问题。该项目将有助于开发其生产方法,在家庭中发现新材料,并探索定制其性能的方法。早期目标是通过真空干燥复制领先的研究结果。如果此方法可靠地提供可以分析的膜,则将开发具有不同卤化物亚列和PI偶联系统的不同有机分子库。这些实验将有助于我们了解分子对如何使材料更好的影响。如果数据生成快速可靠,则使用人工智能可以帮助我们改善材料。如果真空干燥技术无法提供高质量膜的可靠沉积,则将研究替代的干燥方法。热底物使用溶液蒸发溶液,该溶液将溶液洗净但将材料固定在适当的位置。环境温度洗涤是有利的,因为它避免了热应力并具有较低的能量需求。助画技术可能会更好地控制结晶。一旦产生膜,它们将通过光学显微镜,电子显微镜和经量法进行验证,以实现均匀性和厚度。沉积膜的组成将通过光栅入射X射线衍射来确定。先前的研究尚未包括铸造膜的结构测量,而仅包括通过机械化学和结晶得出的材料。对演员膜的分析将揭示任何差异。如果可能的话,这些材料将被施放到薄膜分析仪的氮化硅测量芯片上。该系统可以提供基本的热电表征。与常规测量相比,该系统的速度和高可靠性将减少每个样品的不确定性和时间。如果该系统不合适,则将使用带有热蒸发导电轨道的二氧化硅载玻片来开发方法,以进行4个终端测量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于基因组挖掘的新颖二倍半萜定向发现及逆转肿瘤多药耐药活性及作用机制研究
- 批准号:82373755
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
三七中齐墩果烷型皂苷合成途径的发现与解析
- 批准号:82360742
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
多重导向云木香叶中新颖抗HBV倍半萜及其聚合体的发现和作用机制研究
- 批准号:82304341
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
川芎“一体多用”:基于活性标签化特征分子网络的川芎茎叶“主风眩”新药源发现
- 批准号:82373837
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
两种青牛胆属植物中调控PD-1表达的克罗烷二萜的发现及肿瘤免疫调控功能研究
- 批准号:82304336
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Technology Development: Tailored Nano-Molecular Systems for New Modes of Reactivity
技术开发:用于新反应模式的定制纳米分子系统
- 批准号:
10401246 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Technology Development: Tailored Nano-Molecular Systems for New Modes of Reactivity
技术开发:用于新反应模式的定制纳米分子系统
- 批准号:
10193067 - 财政年份:2021
- 资助金额:
-- - 项目类别:
MERRIT: Multidisciplinary Engineering and Renal Research for Innovation of Technology
MERRIT:技术创新的多学科工程和肾脏研究
- 批准号:
10343764 - 财政年份:2020
- 资助金额:
-- - 项目类别:
UCI MRSEC: Materials Discovery Through Atomic Level Structural Design and Charge Control
UCI MRSEC:通过原子级结构设计和电荷控制进行材料发现
- 批准号:
2011967 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Cooperative Agreement
Acquisition of a High Frequency Pulsed Electron Spin Resonance Spectrometer
获得高频脉冲电子自旋共振谱仪
- 批准号:
7827737 - 财政年份:2011
- 资助金额:
-- - 项目类别: