Engineering of Plastic Degrading Enzymes
塑料降解酶工程
基本信息
- 批准号:2607949
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2020
- 资助国家:英国
- 起止时间:2020 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The misuse of manmade plastics has resulted in an accumulation of non-degradable materials in the biosphere. It is now widely recognized that these plastics pose a serious global pollution threat, especially in marine ecosystems (Science 2010, 329, 1185-1188. Science 2015, 347, 768-771). Consequently, there is a pressing demand for new catalytic strategies to efficiently deconstruct these anthropogenic contaminants to minimize and reverse their environmental impact and to allow valuable raw materials to be recovered in an environmentally sustainable manner. In this studentship we will develop integrated and scalable catalytic processes for the efficient recycling of single polymer feedstock of PVC and complex laminated products, such as blister packs. In 2018, PVC made up about 10% of the polymer resin demand and over 12,000 tonnes of blister pack packaging were shipped into the UK for use in medicine delivery and toothbrush packaging. This project aims to address the recycling difficulties associated with PVC and the separation problems associated with mixed composite materials. PVC is problematic as it is readily unzips to yield HCl between 250-400oC producing a highly unsaturated C rich "poly-ene" with low levels of organo-chlorine (0.1%) remaining, problematic for on-processing. The efficiency of Cl removal is further reduced by the use of additives in the packaging, such as dioctylphthalate (Energy & Fuels 2003, 17, 896).Ionic liquids have the capability of dissolving a wide range of materials and we will examine the potential to selectively solubilise the component parts of problematic polymers to allow the downstream processing to value added products more tractable. This will involve the synthesis of ionic liquids which will allow the breakdown of binders as well as potentially reduce the molecular mass of the polymer materials. The development and optimisation of low temperature dehydrochlorination of PVC using ionic liquids, will facilitate the potential recycling of PVC by addition to hydrogen-rich polyolefin mixed polymer streams using slurry and spinning basket reactors, (Garforth, Patent EP 2437886 -2019).Enzymatic deconstruction of unsaturated C rich "poly-ene". Our lab has recently developed automated high-throughput directed evolution workflows to engineer enzymes that efficiently deconstruct plastics with hydrolysable backbones (e.g. PET, unpublished data). These workflows will now be extended to discover and engineer enzymes that efficiently operate on the C-rich poly-ene fraction generated following the dehydrochlorination of PVC. Several families of oxidative enzymes have been discovered which are active towards varying hydrocarbon chain lengths (Sci. Rep. 2014, 4968), which serve as attractive starting points for enzyme engineering to afford commercially viable biocatalysts for PVC deconstruction to allow valuable raw materials to be recovered in an environmentally sustainable fashion.Hydrocracking of unsaturated C rich "poly-ene" comingled with PP initially will be studied under hydrotreating and hydrocracking conditions using a batch reactor. Heterogeneous catalysts established in our lab based on noble metals (Pt, Pd and Ni), or bimetallic sulphides, such as, Co/MoS or Ni/MoS with the acidic supports being alumina or zeolites (Garforth). Traditional ion exchange and impregnation techniques will be supplemented with aerosol-assisted chemical vapour deposition (AACVD) where a single source precursor has been used to produce a range of thin film Mo1-xWxS2 (0<-x<-1) alloys. This inexpensive ambient pressure CVD technique will be extended to Co and Ni. As noted above, the presence of halides, for example in PVC transformations, have the potential to poison the catalysts and this will be examined in detail.The project takes a truly innovative approach to merge the fields of biocatalysis, ionic liquids and heterogeneous bifunctional catalysis, and thus is perfectly aligned to iCAT's priorities.
人造塑料的滥用导致生物圈中不可降解材料的积累。现在人们广泛认识到这些塑料对全球造成严重的污染威胁,特别是在海洋生态系统中(Science 2010, 329, 1185-1188。Science 2015, 347, 768-771)。因此,迫切需要新的催化策略来有效地解构这些人为污染物,以最大限度地减少和扭转其对环境的影响,并允许以环境可持续的方式回收有价值的原材料。在这个学生项目中,我们将开发集成且可扩展的催化工艺,用于有效回收 PVC 单一聚合物原料和复杂的层压产品(例如泡罩包装)。 2018年,PVC约占聚合物树脂需求的10%,超过12,000吨的泡罩包装被运往英国,用于药品输送和牙刷包装。该项目旨在解决与 PVC 相关的回收困难以及与混合复合材料相关的分离问题。 PVC 是有问题的,因为它很容易在 250-400oC 之间解压产生 HCl,产生高度不饱和的富含 C 的“多烯”,且残留有机氯含量较低 (0.1%),这对加工产生问题。在包装中使用添加剂(例如邻苯二甲酸二辛酯)会进一步降低 Cl 去除效率(Energy & Fuels 2003, 17, 896)。离子液体具有溶解多种材料的能力,我们将研究其潜力选择性地溶解有问题的聚合物的组成部分,使下游加工增值产品更容易处理。这将涉及离子液体的合成,离子液体将分解粘合剂并可能降低聚合物材料的分子量。使用离子液体进行 PVC 低温脱氯化氢的开发和优化,将通过使用浆料和旋转篮式反应器添加到富氢聚烯烃混合聚合物流中,促进 PVC 的潜在回收利用(Garforth,专利 EP 2437886 -2019)。不饱和富含C的“多烯”。我们的实验室最近开发了自动化的高通量定向进化工作流程来设计酶,从而有效地解构具有可水解主链的塑料(例如 PET,未发表的数据)。这些工作流程现在将扩展到发现和设计酶,这些酶可以有效地作用于 PVC 脱氯化氢后产生的富含碳的多烯馏分。已经发现了几个对不同烃链长度具有活性的氧化酶家族(Sci. Rep. 2014, 4968),这为酶工程提供了有吸引力的起点,为 PVC 解构提供商业上可行的生物催化剂,从而使有价值的原材料成为可能。以环境可持续的方式回收。最初将使用间歇式反应器在加氢处理和加氢裂化条件下研究与PP混合的不饱和富C“多烯”的加氢裂化。我们实验室建立的基于贵金属(Pt、Pd 和 Ni)或双金属硫化物(例如 Co/MoS 或 Ni/MoS )的多相催化剂,酸性载体为氧化铝或沸石(Garforth)。传统的离子交换和浸渍技术将得到气溶胶辅助化学气相沉积 (AACVD) 的补充,其中使用单一源前驱体生产一系列薄膜 Mo1-xWxS2 (0<-x<-1) 合金。这种廉价的环境压力 CVD 技术将扩展到 Co 和 Ni。如上所述,卤化物的存在(例如 PVC 转化中的卤化物)有可能使催化剂中毒,对此将进行详细研究。该项目采用真正创新的方法来合并生物催化、离子液体和多相双功能催化领域,因此与 iCAT 的优先事项完全一致。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
20世紀前半のフィリピン降水量データセット作成(DIAS地球観測データ統合解析プロダクトに掲載)
菲律宾20世纪上半叶降水数据集创建(发表于DIAS对地观测数据综合分析产品)
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
- 批准号:
2908923 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Landscapes of Music: The more-than-human lives and politics of musical instruments
音乐景观:超越人类的生活和乐器的政治
- 批准号:
2889655 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
具有优异耐水性的高强度、可降解生物基超分子塑料
- 批准号:22305093
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高风险微塑料和重金属对贝类海产品的复合毒效机制研究
- 批准号:32302228
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
典型纳米塑料在污水处理厂核心单元中的迁移/累积行为及其影响机制
- 批准号:42307487
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
Stenotrophomonas pavanii生物膜介导PET塑料原位降解的分子机制
- 批准号:42307279
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
纳塑料和镉复合暴露对小球藻细胞壁的重塑作用及机制
- 批准号:42307494
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Novel Plastizymes: discovery and improvement of plastic-degrading enzymes by integrated cycles of computational and experimental approaches
新型塑料酶:通过计算和实验方法的综合循环发现和改进塑料降解酶
- 批准号:
BB/X00306X/1 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Research Grant
A framework for machine learning assisted directed evolution of plastic-degrading enzymes
机器学习辅助塑料降解酶定向进化的框架
- 批准号:
10059716 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Launchpad
Biocatalysis by plastic-degrading enzymes for bioremediation and recycling
塑料降解酶的生物催化用于生物修复和回收
- 批准号:
EP/X03464X/1 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Research Grant
I-Corps: Biodegradable plastics that incorporate plastic degrading enzymes
I-Corps:含有塑料降解酶的可生物降解塑料
- 批准号:
2043075 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Standard Grant
Isolation of the bio-degradable plastic degrading bacteria at low temperature and high-pressure conditions, and discovery of the evaluation system of the plastic degradation.
低温高压条件下生物降解塑料降解菌的分离及塑料降解评价体系的发现。
- 批准号:
21580106 - 财政年份:2009
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)