Analytic Number Theory and mean values of L-functions
解析数论和 L 函数的平均值
基本信息
- 批准号:2660863
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
The Riemann zeta-function and other L-functions play a central role in analytic number theory and in mathematics in general. For example, the Riemann zeta-function satisfies an Euler product, which underlines a connection between the natural numbers and the prime numbers. The problem of determining the properties of prime numbers has a long history, from the ancient theorem of Euclid that there are infinitely many primes, to the celebrated eight page paper of Riemann on the zeta-function in the mid-nineteenth century. Since that time, several important problems in analytic number theory have been solved, and Riemann's ideas have been the inspiration behind much of this progress.Investigating the properties of the Riemann zeta-function and L-functions in various contexts leads to many other interesting problems, which now represent major challenges in modern mathematics. In fact both the Riemann Hypothesis, which asserts that all the non-trivial zeros of the Riemann zeta-function lie on a particular line, and the Birch and Swinnerton-Dyer Conjecture, which concerns some properties of the L-functions associated to elliptic curves, have been included in the seven Millennium Prize Problems.The aim of the project is to study various questions related to the moments of the Riemann zeta-function and L-functions, which are the mean values over certain families of these functions. These questions have applications to the distribution of zeros of the Riemann zeta-function (partial answers to the Riemann Hypothesis), the order of magnitude of L-functions (partial answers to the Lindelof Hypothesis), order of vanishing of L-functions at the central point (analytic progress towards the Birch and Swinnerton-Dyer Conjecture), and many others. There is a remarkable connection between the subject and Random Matrix Theory, an area of Mathematical Physics used to describe complex quantum systems.
Riemann Zeta功能和其他L功能在分析数理论和数学中起着核心作用。例如,Riemann Zeta功能满足Euler产品,该产品强调了自然数和质数之间的联系。从欧几里得的古老定理,有很多数量的素数到著名的《八页》关于Zeta功能在19世纪中叶的著名的Riemann论文。自那时以来,已经解决了分析数理论中的几个重要问题,而Riemann的想法是这一进步的大部分进展的灵感。对Riemann Zeta功能的特性进行评估,在各种情况下,Liemann Zeta功能的属性导致了许多其他有趣的问题,这现在代表了现代数学中的主要挑战。实际上,Riemann假设都断言Riemann Zeta功能的所有非平凡的零位于特定行上,以及桦木和Swinnerton-Dyer猜想涉及与椭圆形曲线相关的L-enguntions的某些特性,这些特性已包含在七千年奖中的问题。 Zeta功能和L功能,这是这些功能某些家族的平均值。这些问题适用于Riemann Zeta功能的零分布(对Riemann假设的部分答案),L功能的数量级(对Lindelof假设的部分答案),在中央点消失的L功能消失的顺序(分析了Birch和Swinnerton-Dyerton-Dyernerton-Dyerton-DyertoRENTIC),以及许多其他定位),以及许多其他。主题与随机矩阵理论之间存在着显着的联系,这是用于描述复杂量子系统的数学物理学领域。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
数字经济赋能制造业出口升级:理论分析与经验证据
- 批准号:
- 批准年份:2022
- 资助金额:45 万元
- 项目类别:面上项目
数字经济赋能制造业出口升级:理论分析与经验证据
- 批准号:72273027
- 批准年份:2022
- 资助金额:45.00 万元
- 项目类别:面上项目
服务业数字化转型中的商业发展与竞争:基于数字化建设与数字业务布局的理论分析
- 批准号:72203230
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
数字经济变革下的金融风险管理:基础理论、建模方法和政策分析
- 批准号:72233002
- 批准年份:2022
- 资助金额:190 万元
- 项目类别:重点项目
服务业数字化转型中的商业发展与竞争:基于数字化建设与数字业务布局的理论分析
- 批准号:
- 批准年份:2022
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Class numbers and discriminants: algebraic and analytic number theory meet
类数和判别式:代数和解析数论的结合
- 批准号:
DP240100186 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Discovery Projects
RII Track-4:NSF: From Analytic Number Theory to Harmonic Analysis
RII Track-4:NSF:从解析数论到调和分析
- 批准号:
2229278 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Standard Grant
CAREER: Research in and Pathways to Analytic Number Theory
职业:解析数论的研究和途径
- 批准号:
2239681 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Continuing Grant
Research on p-adic analytic cohomology of algebraic varieties and application to number theory
代数簇的p-adic解析上同调研究及其在数论中的应用
- 批准号:
22K13899 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Early-Career Scientists