Improved robotic locomotion performance through morphological computation and active control
通过形态计算和主动控制提高机器人运动性能
基本信息
- 批准号:2593232
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Robots with legged locomotion have, over the years, demonstrated high flexibility, excellent dynamic stability and adaptability to different terrains and obstacles [1]. They have demonstrated these characteristics in different environments, especially in areas such as rescue, reconnaissance, health-care, security and marine environments [2]. Robots have beenshown to be advantageous in applications involving dull, dirty and dangerous environments, and vital tasks such as nuclear decommissioning remain a key national priority. It is widely believed that over 50% of the earth's surface is inaccessible to wheels or tracks [2], and legged robots have an increasing role to play, judging by recent commercial successes such as ANYbotics [3] and cost-effective, open source systems such as Stanford Doggo [4] and the ODRI [5].Despite the development of legged robots demonstrating safety, robustness and high performance, it is evident that the commercially available robots are designed with centralised control, with every joint actuated. Here, it is pertinent to introduce Morphological Computation (MC), which, in the context of embodied (artificial) intelligence, refers to processes, which are conducted by the body (and environment) that otherwise would have to be performed by the brain [6]. MC is relevant in the study of biological and robotic systems as illustrated in the Passive Dynamic Walker [7], which is a purely mechanical system. The Passive Dynamic Walker shows that walking can result from the interaction of the system's physical properties and its environment without actuation. In the context of robotics, this means that systems with high morphological computation only need to generate motor commands when they are needed. Not only does such a control scheme increase the durability of the systems (because the wear-out of the actuators is decreased), it also means that robots with high MC will have a reduced energy demand for their actuation [8]. This is useful for legged robots, since they need to be untethered for autonomous functioning and transporting payloads over challenging terrains. While there is good acceptance of the role of MC in biological systems, Ghazi-Zahediet al [8], in their exploration on recenttrends, state that its application in robotics remains underexplored. One of the main reasons emphasised by the authors is that the conventional control paradigms treat the body as something that needs to be dominated rather than being used as a computing resource. There is a tendency to suppress any undesirable morphological behaviours like nonlinearity, underactuation or noise through the use of control systems and servo motors. It is quite remarkable that these same complex morphological properties play a key role in the behaviour of natural systems, as described in the research by Abad et al in the MC of a goat hoof in slip reduction [9] and the Puppy [7], an under-actuated robot. At the same time, one of the challenges set out by Deimal et al [10] is to ensure that the systems take advantage of the morphology ('good MC') while avoiding harmful body-environment interactions with respect to the desired functionality ('bad MC'). To achieve the right balance of MC and active control, a formal method is required to measure MC in the system. In their paper detailed with algorithms, Ghazi-Zahedi et al [6] have demonstrated two methods of measuring MC, one of which is to compare behaviour complexity with controller complexity, the former by information of world states and the latter by information of sensor states. The conclusion from review of current landscape of academia and industry is that there is a huge potential for robotics systems that use the inter-play of computational power, centralised control, and morphological features to be more energy efficient and versatile across different applications
多年来,腿式运动机器人表现出了高度的灵活性、优异的动态稳定性以及对不同地形和障碍物的适应性[1]。它们在不同的环境中展示了这些特性,特别是在救援、侦察、医疗保健、安全和海洋环境等领域[2]。事实证明,机器人在涉及枯燥、肮脏和危险环境的应用中具有优势,而核退役等重要任务仍然是国家的重点优先事项。人们普遍认为,超过 50% 的地球表面是轮子或履带无法到达的 [2],从 ANYbotics [3] 等最近的商业成功和具有成本效益的开源来看,腿式机器人发挥着越来越大的作用。系统,如斯坦福 Doggo [4] 和 ODRI [5]。尽管腿式机器人的发展证明了安全性、稳健性和高性能,但很明显,商用机器人是采用集中控制设计的,每个关节已启动。在这里,有必要介绍一下形态计算(MC),在体现(人工智能)智能的背景下,它指的是由身体(和环境)执行的过程,否则必须由大脑执行。 6]。 MC 与生物和机器人系统的研究相关,如被动动态步行器 [7] 所示,它是一个纯机械系统。被动动态步行器表明,步行可以是系统物理特性与其环境相互作用的结果,无需驱动。在机器人技术的背景下,这意味着具有高形态计算能力的系统只需要在需要时生成电机命令。这种控制方案不仅提高了系统的耐用性(因为执行器的磨损减少了),而且还意味着具有高 MC 的机器人的驱动能量需求将减少 [8]。这对于腿式机器人非常有用,因为它们需要不受束缚才能在具有挑战性的地形上自主运行和运输有效负载。虽然 MC 在生物系统中的作用得到了很好的认可,但 Ghazi-Zahediet 等人 [8] 在对近期趋势的探索中指出,其在机器人技术中的应用仍未得到充分探索。作者强调的主要原因之一是传统的控制范式将身体视为需要被支配的东西,而不是被用作计算资源。人们倾向于通过使用控制系统和伺服电机来抑制任何不良的形态行为,例如非线性、欠驱动或噪声。值得注意的是,这些相同的复杂形态特性在自然系统的行为中发挥着关键作用,正如 Abad 等人在山羊蹄防滑 MC 和小狗 [7] 中的研究中所描述的那样,欠驱动机器人。同时,Deimal 等人[10]提出的挑战之一是确保系统利用形态(“良好的 MC”),同时避免与所需功能相关的有害的身体环境相互作用(“坏MC')。为了实现 MC 和主动控制的正确平衡,需要一种正式的方法来测量系统中的 MC。 Ghazi-Zahedi 等人[6]在详细介绍算法的论文中展示了两种测量 MC 的方法,其中一种是将行为复杂性与控制器复杂性进行比较,前者通过世界状态信息进行比较,后者通过传感器状态信息进行比较。回顾当前学术界和工业界的情况得出的结论是,利用计算能力、集中控制和形态特征的相互作用的机器人系统具有巨大的潜力,可以在不同的应用中提高能源效率和多功能性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
S. Fushiya et. al.,: "Isolation of Acromelic Acid D from Clitocybe acromelalga"
S.Fushiya 等。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
鮫島 邦彦: "Influence of reconstituted dark and light chicken muscle myosin filaments on the morphology and strength of heatーinduced gels" Journal of Food Science. 54. 1158-1168 (1989)
Kunihiko Samejima:“重组深色和浅色鸡肉肌球蛋白丝对热诱导凝胶的形态和强度的影响”《食品科学杂志》54。1158-1168(1989)。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
- 批准号:
2908923 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
- 批准号:
2903298 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Landscapes of Music: The more-than-human lives and politics of musical instruments
音乐景观:超越人类的生活和乐器的政治
- 批准号:
2889655 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
抛光机器人柔性变刚度并联执行器宏微协调运动规划与主被动柔顺控制
- 批准号:52305016
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于稀疏优化的冗余机器人低能耗及容噪运动规划研究
- 批准号:62363012
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
计及刚柔耦合效应的工业机器人运动精度可靠性优化设计方法研究
- 批准号:52365033
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
轮足人形机器人多模式运动规划与控制方法研究
- 批准号:62373217
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
磁驱动微型机器人的运动特性及群体调控策略研究
- 批准号:12304260
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Harnessing the Kohler Effect to Promote Motor Learning During Physically Assisted Rehabilitation
利用科勒效应促进物理辅助康复期间的运动学习
- 批准号:
10679557 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Robotic Exoskeleton Gait Training in Transition Aged Persons with Cerebral Palsy
机器人外骨骼对脑瘫过渡期老年人的步态训练
- 批准号:
10752736 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Portable, robotic footwear for real-time control of foot-ground stiffness
用于实时控制足部地面刚度的便携式机器人鞋
- 批准号:
10510157 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Identifying Robotic Training Forces Which Lead To Optimal Recovery of Overground Locomotion
确定可实现地上运动最佳恢复的机器人训练力
- 批准号:
10594057 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Identifying Robotic Training Forces Which Lead To Optimal Recovery of Overground Locomotion
确定可实现地上运动最佳恢复的机器人训练力
- 批准号:
10594057 - 财政年份:2022
- 资助金额:
-- - 项目类别: