Development of a quadruped robot with continuum inflatable legs
连续充气腿四足机器人的研制
基本信息
- 批准号:2598257
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2021
- 资助国家:英国
- 起止时间:2021 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
With the increasing dependence on automation in virtually all parts of industry, the need for intelligent machines that can safely navigate through different terrains and environments is now more pronounced than ever. At present, one of the major difficulties surrounding soft robotics is the lack of controlled mobility. Getting soft robots to walk in a controlled way in different environments without depending on rigid limbs is a difficult challenge to overcome and requires further research.Most walking robots such as Spot by Boston Dynamics are made from rigid material. Their success in being able to walk as well as they do is dependent on heavy computer resources which are responsible for controlling how they move. Even while being armed with such computer power, Spot is still quite limited in the variety of places it can walk in. For example, according to the user's manual: it is not able to walk in wet conditions or in any situation which requires it needs to climb or descend more than 30o inclines. To put this into perspective: this is far less than the maximum angle of 42o allowed by the British Building Regulations for domestic staircases.Nature, on the other hand, has had this problem solved for millions of years. Soft robots which have attempted to capture some of nature's wisdom in this regard have already shown to be useful in a variety of highly delicate situations including surgery, rehabilitation, underwater exploration and even disaster scenarios. This project will develop on work done previously with the ambition of making a robot that can walk on four inflatable legs, similar to, for example: an octopus' limbs. Analysing relevant literature and also shows that there is great support of the hypothesis that inflatable limbs similar to biological legs will be more capable of adapting to their environment without needing massive computational power. As of this writing, no such robot exists; which highlights the importance of the proposed research.AIMS/OBJECTIVESAims:1. To manufacture four soft legs that are made of inflatable material2. To build a soft (or rigid) frame that can hold all four legs, as well as the hardware needed to power and control the way the legs move3. To use pneumatic technology for controlling the pressure in the legs, and getting them to walk using changes in pressureObjectives:The first step is to create a single inflatable leg design will be informed by previous work in the literature. Once the this is made, it will be tested based on how well it can bend using air pressure. The next step will then be to make a frame (the robot's body) which will be able to hold four of these legs and control how they move based on increasing/decreasing air pressure. Finally, the robot's performance will be tested based on how well it can walk in different environments without relying on rigid limbs or massive amounts of computer power.METHODOLOGYThe main line of research will be based on designing a fully inflatable leg that can bend based on the amount of pressure inside. This will require knowledge to be drawn from a variety of different fields in the physical sciences. To successfully make the inflatable limb, new research will need to be conducted in the field of controlled air pressurization technology so that the robot does not depend on an external air compressor. This will all need to be based on a robust network of sensors. The application of such sensors to the proposed robot will also require new research in order to be successfully implemented.EPSRC ALIGNMENTThis is a broad subject and is expected to align with the following EPSRC themes, according to https://epsrc.ukri.org/research/ourportfolio/researchareas/:Artificial intelligence technologiesControl engineeringElectrical motors and drives/electromagneticsEngineering designImage and vision computingRoboticsSensors and instrumentationSoftware engineeringSynthetic biology
随着行业几乎所有部分对自动化的依赖日益增加,现在可以安全地浏览不同地形和环境的智能机器的需求比以往任何时候都更加明显。目前,围绕软机器人技术的主要困难之一是缺乏受控的移动性。在不同的环境中以受控的方式使软机器人行走,而不必依赖僵硬的肢体行走,这是一个困难的挑战,需要进一步研究。大多数步行机器人(例如波士顿动力学)是由刚性材料制成的。他们能够像走路一样走路的成功取决于负责控制其移动方式的重型计算机资源。即使拥有这种计算机功率,斑点仍然在可以走的各个地方仍然有限。将其置于观点上:这远远低于英国建筑法规对国内楼梯允许的42O的最大角度。在这方面试图捕捉大自然智慧的软机器人已经证明在各种高度精致的情况下都很有用,包括手术,康复,水下探索甚至灾难场景。该项目将在以前完成的工作中发展,以制作一个可以在四个充气腿上行走的机器人,例如:章鱼的四肢。分析相关文献并表明,有大力支持以下假设:与生物腿类似的可充气四肢更有能力适应其环境而无需大量的计算能力。在撰写本文时,没有这样的机器人存在。这突出了拟议的研究的重要性。制造四个由充气材料制成的柔软的腿2。要构建一个可以容纳所有四个腿的柔软(或刚性)框架,以及为腿移动的方式提供动力和控制所需的硬件3。要使用气动技术来控制腿部的压力,并使用压力目标的变化使它们走路:第一步是创建单个充气腿设计,将由文献中的先前工作告知。一旦制定了此功能,它将根据使用气压弯曲程度对其进行测试。然后,下一步将是制作一个框架(机器人的身体),该车架将能够握住这些腿中的四个,并控制它们如何基于增加/降低气压。最后,机器人的性能将根据其在不同环境中行走的状态进行测试,而无需依赖刚性的肢体或大量的计算机功率。方法是基于设计完全充气的腿,该腿可以根据内部的压力来弯曲。这将需要知识从物理科学中的各种不同领域中得知。为了成功地使充气肢体肢体,需要在受控的空气加压技术领域进行新的研究,以便机器人不依赖外部空气压缩机。所有这些都需要基于强大的传感器网络。 The application of such sensors to the proposed robot will also require new research in order to be successfully implemented.EPSRC ALIGNMENTThis is a broad subject and is expected to align with the following EPSRC themes, according to https://epsrc.ukri.org/research/ourportfolio/researchareas/:Artificial intelligence technologiesControl engineeringElectrical motors and驱动器/电磁工程设计图像和视觉计算机器人和仪器ofstrationsoftware工程生物学
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
可变构型野外山地四足机器人自主运动控制与设计方法研究
- 批准号:52305024
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
复杂交互作用下四足机器人运动控制与腿-臂协调作业方法研究
- 批准号:62303282
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
危化场景下基于四足机器人的持久性定位与全生命周期地图更新方法研究
- 批准号:42374029
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
液压四足机器人多缸串联空间阻抗参数匹配与四肢交替协同调控方法
- 批准号:52305072
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
具有灵巧躯干的四足机器人神经肌肉控制架构及其多模态协调行为控制方法研究
- 批准号:62373064
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
相似海外基金
Development of a quadruped robot with bio-inspired mechanisms for highly efficient dynamic locomotion
开发具有仿生机制的四足机器人,实现高效动态运动
- 批准号:
20K22389 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Research Activity Start-up
Limit Cycle Control of a Quadruped Robot Using Gait Pattern Control and Multi-Degree-of-Freedom Vibration Control
使用步态模式控制和多自由度振动控制的四足机器人极限环控制
- 批准号:
18K04003 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
A high-speed quadruped legged robot equipped with a power transmission mechanism capable of extracting large amount of energy
配备可提取大量能量的动力传输机构的高速四足足机器人
- 批准号:
18H01412 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Tactile Feet and Online Learning for Robust Control of a Quadruped Robot in Challenging Terrain
触觉足和在线学习在具有挑战性的地形中实现四足机器人的鲁棒控制
- 批准号:
1951503 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship
Robotics for hazardous environments; A mechatronic tail for dynamic compensation of a robotic arm applied to a Quadruped robot
适用于危险环境的机器人;
- 批准号:
1957210 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Studentship