Tactile Feet and Online Learning for Robust Control of a Quadruped Robot in Challenging Terrain
触觉足和在线学习在具有挑战性的地形中实现四足机器人的鲁棒控制
基本信息
- 批准号:1951503
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2017
- 资助国家:英国
- 起止时间:2017 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Tactile sensing has been extensively explored in the domain of object manipulation and detection, especially with the TacTip tactile sensor, but very little has been done in the domain of tactile feet for walking robots. With feet there is a similar issue as in hands: by interacting with the environment the robot occludes the surface that needs quantifying (whether this be in texture, surface orientation, edge detection etc). Therefore the application of a tactile sensor, which directly measures the contacted surface, seems more appropriate than commonly used non-contact methods such as computer vision (CV), lidar or sonar which cannot sense the surface under contact. The addition of tactile feet may give a walking robot more reliable estimation of slip between the feet and floor, floor distance and orientation and identification of smooth/bumpy surfaces (for selection of stable footholds), all of which improve the success of a quadruped walking and/or running over uneven natural terrain. Most walking robots struggle to do this. Tactile feet pose additional challenges to those faced in tactile hands. The hardware must be capable of supporting the body weight and withstand the impact from walking/running and be resistant to unexpected objects encountered in natural terrain (e.g. sharp objects). The software must handle the greater distortion and noise of the sensor caused by the movements of the supported robot, which is inherently more complex and dynamic than the noise experienced in hands, and the feedback loop must be faster as walking or running require faster movements than with object grasping and manipulation. Additionally given the size and mobile nature of a walking robot, any software must either run on an onboard microcomputer, which restricts computational power, or there must be a high speed connection to an offboard computer which is fast enough to enable real time control of the robot. Additionally, as explored in the first year project, the use of online learning methods to learn the mapping between tactile data and useful control inputs could be a data efficient and robust way of training the robot. Offline methods tend to be extremely data intensive, needing data across all possible dimensions of variation, and cannot learn to adapt to novel inputs encountered during testing. Additionally the models are learnt for specific sensors which may break and need replacing at any time, and while replacement sensors will be similar there is enough difference that the same models cannot be used and all training must be repeated. The use of online learning solves these problems, introducing instead the challenge of creating comprehensive online data collection policies in order for the correct mappings to be learnt autonomously. A neat extension from the first year project, which explored data-efficient online sensor training and control in edge following tasks, is the development of a beam-balancing robot. Fitting a quadruped with tactile feet would enable it to walk along a randomly curving beam only slightly wider than its leg span, without falling. With tactile sensing it is possible to identify an edge and how far along the sensor the edge is (as explored with a single sensor in the first year project). This is in contrast to a robot without tactile sensing which would be unable to tell if the foot is fully on the beam or not - the use of onboard cameras watching the feet would be obscured from seeing directly under the feet by the feet or the terrain (e.g. grass) so may be unreliable. Using tactile sensors in this way would allow the robot to move the feet back onto the beam and prevent falling (in a more complex system using maps the locations of the edge could be noted to aid future planning of stable courses).
在物体操纵和检测的领域,尤其是在Tactip触觉传感器的领域中,对触觉感应进行了广泛的探索,但是在步行机器人的触觉脚的范围内完成了很少的操作。脚有一个类似的问题:通过与环境相互作用,机器人会阻塞需要量化的表面(无论是纹理,表面取向,边缘检测等)。因此,直接测量接触表面的触觉传感器的应用似乎比常用的非接触方法(例如计算机视觉(CV),激光雷达或声纳或声纳,这些传感器都无法感觉到接触中的表面。触觉脚的增加可能会使步行机器人对脚和地板之间的滑动,地板距离,方向以及识别光滑/颠簸的表面(用于选择稳定的立足点)的更可靠估计,所有这些都改善了四足步行的成功和/或在不均匀的自然地形上奔跑的成功。大多数步行机器人都难以这样做。触觉脚面临着触觉的人面临的其他挑战。该硬件必须能够支撑体重并承受步行/跑步的影响,并抵抗自然地形(例如锋利的物体)中遇到的意外物体。该软件必须处理由受支持的机器人的运动引起的传感器的更大失真和噪声,该机器人的运动本质上比手中经历的噪声更复杂和动态,并且反馈回路必须比对象抓握和操纵更快,因为步行或跑步需要更快的运动。此外,鉴于步行机器人的大小和移动性质,任何软件都必须在限制计算功率的机载微型计算机上运行,或者必须与卸货计算机建立高速连接,该计算机足够快以实现机器人的实时控制。此外,正如第一年项目中所探讨的那样,使用在线学习方法来学习触觉数据和有用的控制输入之间的映射可能是训练机器人的一种有效且强大的方法。离线方法往往是非常数据密集型的,需要在所有可能的变化方面进行数据,并且无法学会适应测试过程中遇到的新颖输入。此外,对于特定传感器而言,这些模型是在任何时候都可能破坏和需要替换的特定传感器的,尽管替换传感器将相似,但是有足够的差异,无法使用相同的模型,并且必须重复所有训练。在线学习的使用解决了这些问题,而是引入制定全面的在线数据收集政策的挑战,以便自主地学习正确的映射。第一年项目的整洁扩展是在任务后探索了数据效率的在线传感器培训和控制,这是横梁平衡机器人的开发。将四倍的触觉脚贴合可以使其沿着随机弯曲的光束行走,而不会稍宽,而不会掉落。通过触觉传感,可以识别边缘以及边缘传感器的距离(正如第一年项目中的单个传感器所探索的那样)。这与没有触觉感应的机器人形成鲜明对比的是,该机器人无法确定脚是否完全在光束上 - 使用板上摄像机看着脚会被脚或地形(例如草)直接看到脚下的脚下看见,因此可能是不可靠的。以这种方式使用触觉传感器将使机器人可以将脚移回光束上并防止掉落(在更复杂的系统中使用地图,可以注意到边缘的位置可以帮助稳定课程的未来计划)。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Tetraspanins predict the prognosis and characterize the tumor immune microenvironment of glioblastoma.
- DOI:
10.1038/s41598-023-40425-w - 发表时间:
2023-08-16 - 期刊:
- 影响因子:4.6
- 作者:
- 通讯作者:
Comparison of a novel self-expanding transcatheter heart valve with two established devices for treatment of degenerated surgical aortic bioprostheses.
- DOI:
10.1007/s00392-023-02181-9 - 发表时间:
2024-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Axotomy induces axonogenesis in hippocampal neurons through STAT3.
- DOI:
10.1038/cddis.2011.59 - 发表时间:
2011-06-23 - 期刊:
- 影响因子:9
- 作者:
- 通讯作者:
Humoral responses to the SARS-CoV-2 spike and receptor binding domain in context of pre-existing immunity confer broad sarbecovirus neutralization.
- DOI:
10.3389/fimmu.2022.902260 - 发表时间:
2022 - 期刊:
- 影响因子:7.3
- 作者:
- 通讯作者:
Empagliflozin Treatment Attenuates Hepatic Steatosis by Promoting White Adipose Expansion in Obese TallyHo Mice.
- DOI:
10.3390/ijms23105675 - 发表时间:
2022-05-18 - 期刊:
- 影响因子:5.6
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
基于激光加工的形状记忆聚合物仿壁虎脚结构制备及其粘附性能调控研究
- 批准号:52305319
- 批准年份:2023
- 资助金额:20 万元
- 项目类别:青年科学基金项目
脚桥核(PPN)胆碱能神经元对帕金森病认知灵活性障碍的调控作用及机制研究
- 批准号:82301595
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脚间核神经降压素能神经元参与疼痛调控的神经环路与受体机制
- 批准号:82301413
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
脚桥被盖核谷氨酸能神经元在七氟烷麻醉-觉醒意识转换中的作用及神经环路机制研究
- 批准号:82201413
- 批准年份:2022
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
深渊片脚类动物原位代谢测量与高质量实验技术研究
- 批准号:42276191
- 批准年份:2022
- 资助金额:54 万元
- 项目类别:面上项目
相似海外基金
Floer理論に立脚したミラー対称性予想にまつわる幾何学の新展開
基于Floer理论的镜像对称猜想相关几何学新进展
- 批准号:
23K20796 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
混合場と反応過程の精密解析に立脚した固溶ナノ合金の合理的設計戦略の確立
基于混合场和反应过程的精确分析建立固溶体纳米合金的合理设计策略
- 批准号:
24KJ1512 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for JSPS Fellows
多脚ロボットのボトムアップ・トップダウン融合制御
多足机器人自下而上/自上而下融合控制
- 批准号:
24K07411 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
カイラル有効場理論に立脚する原子核とハイパー核の理解
基于手性有效场理论理解原子核和超核
- 批准号:
24K07019 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
微量元素研究に立脚した慢性疾患の分子病態解明と新規治療法の確立
基于微量元素研究阐明慢性病的分子病理学并建立新的治疗方法
- 批准号:
24H00590 - 财政年份:2024
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (A)