A Functional Census of p53 Cancer and Suppressor Mutants
p53 癌症和抑制突变体的功能普查
基本信息
- 批准号:6989008
- 负责人:
- 金额:$ 36.32万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2005
- 资助国家:美国
- 起止时间:2005-08-01 至 2010-05-31
- 项目状态:已结题
- 来源:
- 关键词:DNA binding proteinartificial intelligencebinding sitescomputational biologygene induction /repressiongene mutationgenetic screeninggenetic transcriptionmathematical modelmodel design /developmentmolecular biology information systemneoplasm /cancer geneticsneoplasm /cancer pharmacologyp53 gene /proteinprotein sequencerecombinant proteinssmall moleculetumor suppressor genesyeast two hybrid system
项目摘要
DESCRIPTION (provided by applicant): The broad, long-term objectives are (1) demonstrate computational and experimental methods cooperating to achieve a functional census of a large mutation sequence space of great medical importance; (2) contribute to our knowledge of p53 functional rescue mechanisms, and so facilitate the search for a small molecule cancer drug that effects an analogous functional rescue of p53; and (3) elucidate part of the systems biology of cancer by characterizing the spectrum of p53 cancer and suppressor mutants across known downstream p53 DNA binding sites. Mutations to the tumor suppressor protein p53 occur in approximately half of all human cancers, and restoring function to a mutationally defective p53 protein is a long-held medical goal. Biological precedence for rescuing p53 cancer mutations is found in second-site p53 cancer suppressor mutations. The analogous p53 pharmacological rescue would save hundreds of thousands of lives annually. Understanding and predicting p53 rescue is an important step toward that goal.
The specific aims are (1) computationally predict all single suppressor mutations for p53 cancer mutants and validate the results experimentally, (2) optimize the rescue effects of known and putative p53 suppressor regions through two or more coordinated mutation changes, and (3) predict and experimentally validate the DNA binding specificity of p53 cancer and suppressor mutants for known p53 DNA binding sites. Our broad strategy is a coordinated computational and experimental attack. We already have experimental p53 functional assays and computational predictors of p53 activity, developed as part of our Preliminary Studies. Computational predictors will be used to focus experimental work into the highest priority areas. Experimental validation of the predictions will lead to a larger training set for machine learning techniques. The larger training set will lead to even more accurate predictions, thus even more focused experimentation. Thus, the interplay between computation and experiment will become ever more efficient as the project progresses. Variations of this basic strategy apply to each of our Specific Aims, which all rely on closely coordinated experiment and computation.
描述(由申请人提供):广泛的长期目标是(1)证明了合作的计算和实验方法,以实现具有极大医学重要性的大突变序列空间的功能普查; (2)有助于我们对p53功能救援机制的了解,从而促进寻找一种小分子癌药物,该药物会影响p53的类似功能救助; (3)通过表征已知下游p53 DNA结合位点的p53癌症和抑制突变体的光谱来阐明癌症系统生物学的一部分。抑制肿瘤蛋白p53的突变发生在大约一半的人类癌症中,而将功能恢复为突变有缺陷的p53蛋白是长期以来的医疗目标。在第二站点p53癌症突变中发现了营救p53癌症突变的生物学优先级。类似的p53药理学救援将每年挽救数十万生命。理解和预测p53救援是朝着该目标迈出的重要一步。
具体目的是(1)计算上预测p53癌症突变体的所有单个抑制突变,并通过实验验证结果,(2)通过两个或多个协调的突变变化来优化已知和推定的p53抑制区域的救援效应,(3)预测和实验验证了p53癌症和抑制p53 dna的DNA结合特异性P53 dna dna的DNA结合特异性。我们的广泛策略是协调的计算和实验攻击。我们已经拥有p53活性的实验p53功能测定和计算预测指标,这是我们初步研究的一部分。计算预测因素将用于将实验工作集中在最高优先级领域。对预测的实验验证将为机器学习技术提供更大的培训集。较大的训练集将导致更准确的预测,从而更加集中实验。因此,随着项目的进行,计算和实验之间的相互作用将变得更加有效。这种基本策略的变化适用于我们的每个特定目标,这些目标都依赖于密切协调的实验和计算。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
RICHARD H LATHROP其他文献
RICHARD H LATHROP的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('RICHARD H LATHROP', 18)}}的其他基金
A Functional Census of p53 Cancer and Suppressor Mutants
p53 癌症和抑制突变体的功能普查
- 批准号:
7613343 - 财政年份:2005
- 资助金额:
$ 36.32万 - 项目类别:
相似国自然基金
人工智能驱动的营销模式和消费者行为研究
- 批准号:72332006
- 批准年份:2023
- 资助金额:165 万元
- 项目类别:重点项目
基于“人工智能算法+高精度遥感数据”的棉花表型信息识别及解析
- 批准号:32360436
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
巴氏杀菌乳中金黄色葡萄球菌和肠毒素A风险预测和溯源的人工智能模型构建研究
- 批准号:32302241
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
制造企业人工智能工作场景下员工AI认同影响机制与员工主动行为内在机理研究
- 批准号:72362025
- 批准年份:2023
- 资助金额:27 万元
- 项目类别:地区科学基金项目
基于原子贡献与人工智能的萃取精馏溶剂分子设计研究
- 批准号:22308037
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Prevent IgM MGUS Progression by Targeting the Driver Mutation
通过针对驱动突变来预防 IgM MGUS 进展
- 批准号:
10745013 - 财政年份:2023
- 资助金额:
$ 36.32万 - 项目类别:
Enabling Rational Design of Drug Targeting Protein-Protein Interactions with Physics-based Computational Modeling
通过基于物理的计算模型合理设计靶向药物的蛋白质-蛋白质相互作用
- 批准号:
10710974 - 财政年份:2023
- 资助金额:
$ 36.32万 - 项目类别:
Correlating structure and function in KATP channel isoforms
KATP 通道亚型的结构和功能相关
- 批准号:
10629412 - 财政年份:2022
- 资助金额:
$ 36.32万 - 项目类别:
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening: Aiming toward total in silico design of antibodies
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性:旨在实现抗体的全面计算机设计
- 批准号:
10603473 - 财政年份:2020
- 资助金额:
$ 36.32万 - 项目类别:
A Functional Census of p53 Cancer and Suppressor Mutants
p53 癌症和抑制突变体的功能普查
- 批准号:
7103691 - 财政年份:2005
- 资助金额:
$ 36.32万 - 项目类别: