Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening: Aiming toward total in silico design of antibodies
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性:旨在实现抗体的全面计算机设计
基本信息
- 批准号:10603473
- 负责人:
- 金额:$ 100万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-05-01 至 2026-04-30
- 项目状态:未结题
- 来源:
- 关键词:2019-nCoVAccelerationAddressAffinityAlgebraAlgorithmsAntibodiesAntibody AffinityAntibody Binding SitesAntigen TargetingAntigen-Antibody ComplexAntigensArtificial IntelligenceAutoimmune DiseasesAvidityB-Lymphocyte EpitopesBindingBioinformaticsBiotechnologyCarrier ProteinsChargeChemicalsChinese Hamster Ovary CellClientCloud ComputingComputer AssistedComputer softwareConsumptionCritiquesDNADataDetectionDevelopmentDiagnosisDiseaseDissociationDockingDrug IndustryEpitopesEventG-Protein-Coupled ReceptorsGenetic RecombinationGoalsHealthHistocompatibility TestingHormonesHumanImmune systemImmunoglobulin FragmentsIn VitroIndividualInterferometryKineticsLaboratoriesLibrariesMalignant NeoplasmsMarketingMathematicsMeasuresMedicalMethodsMinorModelingMolecularMolecular ConformationMonoclonal AntibodiesMutationParentsPharmacologic SubstancePhasePhysicsProcessPropertyProtein EngineeringProtein RegionProteinsRecording of previous eventsResearch ContractsResearch PersonnelRunningSARS-CoV-2 spike proteinScreening ResultServicesShapesSiteSpecificitySpeedStructureSurfaceSystemTechniquesTestingTherapeuticTherapeutic Monoclonal AntibodiesTherapeutic antibodiesTimeToxinTrainingTranslatingVariantVirus DiseasesVisualizationWestern BlottingWorkalgorithm developmentblindcostcross reacting material 197designdrug developmentdrug discoverydrug testingexperimental studyflexibilityhigh throughput screeninghuman diseaseimprovedin silicokinematicsmathematical methodsmechanical forcemolecular mechanicsnanomolarnovel therapeuticsorgan transplant rejectionparticlepathogenpredictive modelingprotein structure predictionresponsescreeningsimulationsuccesstoolvirtualvirtual screeningwasting
项目摘要
Therapeutic monoclonal antibodies bind to specific regions of proteins called epitopes, which elicit cellular
responses that treat or cure disease. Discovering therapeutic antibodies traditionally requires costly and labor-
intensive, laboratory-based screening experiments. Computational approaches that select antibodies with the
most desirable pharmaceutical properties are thus poised to improve health by accelerating the development of
new drugs. Unfortunately, current algorithms are often unable to distinguish stronger-binding antibodies from
weaker ones. Improvements to structure prediction and molecular visualization will lower costs and increase the
speed with which new drugs are developed by allowing researchers to focus on the most promising candidates
as early in the process as possible.
DNASTAR’s goals are to increase the speed of predicting the structure of antibody-antigen interactions using
superior mathematical methods and to transform antibodies with micromolar binding affinity into those with
improved nanomolar affinity using new computer-aided antibody design techniques. This will accelerate antibody
discovery by enabling detailed and accurate immune complex structure predictions and structure-based
chemical liability detection at a high-throughput scale.
In Phase II, we first created an in silico human germline sequence library and used it to simulate the natural
V(D)J and VJ recombination events of the immune system, generating a new library of assembled antibody
sequences. To select antibody candidates that bound a chosen target, we developed a simulation algorithm in
which antibody candidates were docked against a chosen target protein. The 24 candidates with the best
predicted binding energy were converted to single-chain antibodies and propagated in CHO cells. Three
candidates were found to bind the target using native Western blots. The binding affinity and kinetics of these
three candidates were then measured by bio-layer interferometry. The tightest binding candidate was then
subjected to a form of simulated affinity maturation where individual site-directed mutations were ranked by their
predicted ability to enhance affinity for the antigen. Four out of five tested variants showed improved binding over
its parent using bio-layer interferometry.
The goal of our Phase IIB proposal is to build upon this success and further improve predictive capability by
incorporating unequaled algebraic mathematics and computational acceleration techniques to support the virtual
screening of tens of thousands of antibody sequences. For the first time in history, this will enable antibodies to
be selected for development by first modeling them from germline sequences using a “virtual immune system.”
Our ultimate intent is to deliver a complete antibody discovery pipeline that is powerful, accurate, produces fast
results, and yields lab-scale quantities of DNA and protein materials for the selected antibodies.
治疗性单克隆抗体与称为表位的蛋白质的特定区域结合,这些区域引起细胞
治疗或治愈疾病的反应。传统上发现治疗抗体需要昂贵和劳动力 -
基于实验室的密集筛查实验。选择抗体的计算方法
因此
新药。不幸的是,当前的算法通常无法将更强的结合抗体与
较弱的。改进结构预测和分子可视化将降低成本并增加
通过允许研究人员专注于最有前途的候选人来开发新药的速度
在此过程的早期。
DNASTAR的目标是提高使用使用抗体 - 抗原相互作用的结构的速度
上级数学方法并将具有微摩尔结合亲和力转化为具有的抗体
使用新的计算机辅助抗体设计技术改善了纳摩尔亲和力。这将加速抗体
通过启用详细且准确的免疫复杂结构预测和基于结构
高通量量表的化学责任检测。
在第二阶段,我们首先创建了一个硅的人类种系序列库,并使用它来模拟自然
v(d)J和VJ的重组事件的免疫系统,生成一个新的组装抗体库
序列。为了选择绑定所选靶标的抗体候选物,我们开发了一种模拟算法
哪些抗体候选物是针对选定的靶蛋白对接的。最好的24名候选人
预测的结合能转化为单链抗体,并在CHO细胞中传播。三
发现候选者使用天然蛋白质印迹结合目标。这些的绑定亲和力和动力学
然后通过生物层干扰测量三个候选者。那时最紧的约束候选人是
经过一种模拟亲和力成熟的形式,在单个位置定向的突变被其排名
预测增强对抗原亲和力的能力。在五个测试的变体中,有四个显示了改进的结合
其父母使用生物层干扰。
我们阶段IIB提议的目标是建立这一成功,并进一步提高预测能力
合并无等的代数数学和计算加速技术来支持虚拟
筛选成千上万的抗体序列。这是历史上的第一次,这将使抗体能够
首先使用“虚拟免疫系统”从种系序列中对其进行建模,以进行开发。
我们的最终目的是提供一条完整的抗体发现管道,该管道强大,准确,可以快速产生
结果,并产生用于选定抗体的DNA和蛋白质材料的实验室规模量。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
FREDERICK R BLATTNER其他文献
FREDERICK R BLATTNER的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('FREDERICK R BLATTNER', 18)}}的其他基金
Software for the complete characterization of antibody repertoires: from germline and mRNA sequence assembly to deep learning predictions of their protein structures and targets
用于完整表征抗体库的软件:从种系和 mRNA 序列组装到其蛋白质结构和靶标的深度学习预测
- 批准号:
10699546 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Production of antibody therapeutic fragments by reduced genome E. coli in continuous culture
在连续培养中通过减少基因组大肠杆菌生产抗体治疗片段
- 批准号:
10081714 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Production of antibody therapeutic fragments by reduced genome E. coli in continuous culture
在连续培养中通过减少基因组大肠杆菌生产抗体治疗片段
- 批准号:
10215525 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Rapid structure-based software to enhance antibody affinity and developability for high-throughput screening
基于快速结构的软件可增强抗体亲和力和高通量筛选的可开发性
- 批准号:
10385733 - 财政年份:2020
- 资助金额:
$ 100万 - 项目类别:
Lysis-free extraction of biopharmaceuticals from the periplasm of Clean Genome E. coli
从清洁基因组大肠杆菌周质中免裂解提取生物药物
- 批准号:
9926039 - 财政年份:2019
- 资助金额:
$ 100万 - 项目类别:
Characterization of a low mutation rate E. coli in extended fermentation
低突变率大肠杆菌在延长发酵中的表征
- 批准号:
9276026 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Characterization of a low mutation rate E. coli in extended fermentation
低突变率大肠杆菌在延长发酵中的表征
- 批准号:
8455785 - 财政年份:2013
- 资助金额:
$ 100万 - 项目类别:
Toxoid adjuvant CRM197 production in a stable reduced genome E. coli strain
在稳定的基因组减少的大肠杆菌菌株中产生类毒素佐剂 CRM197
- 批准号:
8252834 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
A protease-deficient, low mutation rate E. coli for biotherapeutics production
用于生物治疗药物生产的蛋白酶缺陷型、低突变率大肠杆菌
- 批准号:
8727638 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
Toxoid adjuvant CRM197 production in a stable reduced genome E. coli strain
在稳定的基因组减少的大肠杆菌菌株中产生类毒素佐剂 CRM197
- 批准号:
9897524 - 财政年份:2012
- 资助金额:
$ 100万 - 项目类别:
相似国自然基金
基于腔光机械效应的石墨烯光纤加速度计研究
- 批准号:62305039
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于自持相干放大的高精度微腔光力加速度计研究
- 批准号:52305621
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
位移、加速度双控式自复位支撑-高层钢框架结构的抗震设计方法及韧性评估研究
- 批准号:52308484
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
高离心加速度行星排滚针轴承多场耦合特性与保持架断裂失效机理研究
- 批准号:52305047
- 批准年份:2023
- 资助金额:30.00 万元
- 项目类别:青年科学基金项目
基于偏心光纤包层光栅的矢量振动加速度传感技术研究
- 批准号:62305269
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
NeuroMAP Phase II - Recruitment and Assessment Core
NeuroMAP 第二阶段 - 招募和评估核心
- 批准号:
10711136 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
IAS 2023, the 12th IAS Conference on HIV Science, Brisbane, Australia, and virtually, 23-26 July 2023
IAS 2023,第 12 届 IAS HIV 科学会议,澳大利亚布里斯班,虚拟会议,2023 年 7 月 23-26 日
- 批准号:
10696505 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Neuroprotective Potential of Vaccination Against SARS-CoV-2 in Nonhuman Primates
SARS-CoV-2 疫苗对非人灵长类动物的神经保护潜力
- 批准号:
10646617 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Investigating the role and therapeutic potential of the alpha5beta1 integrin in risk factors for COVID-19-associated cognitive impairment
研究 α5β1 整合素在 COVID-19 相关认知障碍危险因素中的作用和治疗潜力
- 批准号:
10658178 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别:
Impact of obesity on SARS-CoV-2 infection and reciprocal effects of SARS-CoV-2 on metabolic disease
肥胖对 SARS-COV-2 感染的影响以及 SARS-COV-2 对代谢疾病的相互影响
- 批准号:
10583175 - 财政年份:2023
- 资助金额:
$ 100万 - 项目类别: