Topological data analysis of flows in directed spatial networks for modelling vascular networks

用于建模血管网络的定向空间网络中的流的拓扑数据分析

基本信息

  • 批准号:
    2423011
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Understanding how oxygen is supplied through vascular networks is of vital importance in a range of medical applications. The structure of these networks can vary greatly. For example, angiogenesis in the vicinity of tumours is characterised by bendy vessels with many loops, in contrast to healthy vasculature. Vascular targeting agents attack the blood vessels around tumours, to limit vessel connectivity and thus (hopefully) oxygen supply. Angiogenesis and targeting agents both alter the topology of the vascular network. It is therefore important to understand and quantify how changes to the topology in the network affect the flow of oxygen to the tissue. Recent work by Stolz et al [1] has shown that topological data analysis provides a robust tool for "relating the form and function of vascular networks". The DPhil project will attempt to add directionality into existing analysis in this area.Topological data analysis is a growing field at the intersection of algebraic topology and data science. Tools such as persistent homology can quantitatively capture important features in data sets, such as loops, tortuosity and clusters. Crucially, the outputs of persistent homology are stable under perturbation of the underlying data set. Important features, present at a wide range of scales, are distinguished from transient, noisy features. This provides a topological summary of a data set, amenable to further statistics or machine learning techniques, depending on the application. Moreover, this technique can be applied to data sets in many forms, including point clouds, graphs and spatial networks.xThe Navier-Stokes equations are used to model fluid flow in a variety of settings. However, blood is a non-Newtonian fluid, so the stress tensor must be modified to take this into account. Worse yet, vessels cannot be accurately represented as rigid tubes and thus classical fluid dynamics often falls short. This necessitates the use of alternative models for understanding the large-scale behaviour of vascular systems. Given the network structure of typical vasculature, a natural approach is to model the vessel network as a spatial network. A dynamical system, capturing traditional fluid dynamics terms such as convection and diffusion, can then be imposed on this network to model blood flow. The underlying network can then be altered appropriately, the change in the underlying topology can be measured through techniques from TDA and the effect to the flow can be measured by running the dynamical system.Since flow in vascular networks is directed, a natural question is how adding directionality, through asymmetry in the underlying network, affects the flow. Furthermore, in this directed setting, when the underlying network structure changes, how does the flow respond? It is also not clear what is the most appropriate method for measuring the topology of a directed network. Possible techniques include the Euler Characteristic and the flagser package by Lutgehetmann [2], which computes the persistent homology of a directed flag complex. Alternatively, recent work by Chowdhury and Mémoli [3] has introduced persistent path homology, capable of distinguishing between important digraph motifs, which are indistinguishable to flagser. The computational requirements of these methods is also an important consideration. As with all applications of persistent homology, correct filtration choice is vital to achieving desirable results. One could use both vessel length and vessel diameter as filtration parameters, potentially requiring the use of multi-parameter persistent homology. This DPhil project will attempt to answer some of these questions and develop a directional model for blood flow and oxygen delivery in vascular networks.This project falls within the EPSRC Geometry & Topology research area and, more specifically, 'Application driven Topological Data Analysis'.
了解如何通过血管网络供应氧气在一系列医疗应用中至关重要。这些网络的结构可能差异很大,例如,与健康相比,肿瘤附近的血管生成的特点是具有许多环的弯曲血管。血管靶向剂攻击肿瘤周围的血管,以限制血管连接,从而(希望)血管生成和靶向剂都改变血管网络的拓扑结构。 Stolz 等人最近的工作 [1] 量化了网络拓扑的变化如何影响组织中的氧气流动,拓扑数据分析为“关联血管网络的形式和功能”提供了强大的工具。该项目将尝试在该领域的现有分析中添加方向性。拓扑数据分析是代数拓扑和数据科学交叉领域的一个不断发展的领域,同源等工具可以定量捕获数据集中持久的重要特征,例如循环、至关重要的是,持久同源性的输出在基础数据集的扰动下是稳定的,这提供了数据集的拓扑总结。根据应用,可以采用进一步的统计或机器学习技术。此外,该技术可以应用于多种形式的数据集,包括点云、图形和空间网络。纳维-斯托克斯方程用于然而,血液是非牛顿流体,因此必须修改应力张量以考虑到这一点,更糟糕的是,血管无法准确地表示为刚性管,因此经典流体动力学常常会失败。简而言之,这需要使用替代模型来理解血管系统的大规模行为,考虑到典型脉管系统的网络结构,一种自然的方法是将血管网络建模为一个动态系统,捕获传统的流体动力学。术语如对流和扩散,然后可以施加到该网络上以模拟血流,然后可以适当地改变底层网络,可以通过 TDA 的技术来测量底层拓扑的变化,并且可以通过运行来测量对血流的影响。由于血管网络中的流动是定向的,一个自然的问题是如何通过底层网络中的不对称性增加方向性来影响流动。此外,在这种定向设置中,当底层网络结构发生变化时,流动如何响应?也不清楚什么是最测量有向网络拓扑的适当方法包括欧拉特征和 Lutgehetmann [2] 的 flagser 包,它计算有向标记持久复合体的同源性,或者,Chowdhury 和 Mémoli [3] 最近的工作。引入了持久路径同源性,能够区分重要的有向图基序,而这些基序对于 flagser 来说是无法区分的,与持久性的所有应用一样,这些方法的计算要求也是一个重要的考虑因素。同源性,正确的过滤选择对于获得理想的结果至关重要,可以使用血管长度和血管直径作为过滤参数,可能需要使用多参数持久同源性。血管网络中血流和氧气输送的定向模型。该项目属于 EPSRC 几何与拓扑研究领域,更具体地说,属于“应用驱动的拓扑数据分析”。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Interactive comment on “Source sector and region contributions to BC and PM 2 . 5 in Central Asia” by
关于“来源部门和地区对中亚 BC 和 PM 5 的贡献”的互动评论。
  • DOI:
  • 发表时间:
    2014
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition
采用动态模态分解对流过受迫振荡圆柱体的流进行涡流脱落分析
  • DOI:
    10.1063/5.0153302
  • 发表时间:
    2023-05-01
  • 期刊:
  • 影响因子:
    4.6
  • 作者:
  • 通讯作者:
Observation of a resonant structure near the D + s D − s threshold in the B + → D + s D − s K + decay
观察 B – D s D – s K 衰减中 D s D – s 阈值附近的共振结构
Accepted for publication in The Astrophysical Journal Preprint typeset using L ATEX style emulateapj v. 6/22/04 OBSERVATIONS OF RAPID DISK-JET INTERACTION IN THE MICROQUASAR GRS 1915+105
接受《天体物理学杂志》预印本排版,使用 L ATEX 样式 emulateapj v. 6/22/04 观测微类星体 GRS 中的快速盘射流相互作用 1915 105
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:
The Evolutionary Significance of Phenotypic Plasticity
表型可塑性的进化意义
  • DOI:
  • 发表时间:
    2024-09-14
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Development of a new solid tritium breeder blanket
新型固体氚增殖毯的研制
  • 批准号:
    2908923
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Landscapes of Music: The more-than-human lives and politics of musical instruments
音乐景观:超越人类的生活和乐器的政治
  • 批准号:
    2889655
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Cosmological hydrodynamical simulations with calibrated non-universal initial mass functions
使用校准的非通用初始质量函数进行宇宙流体动力学模拟
  • 批准号:
    2903298
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

水下隧道泥质充填裂隙围岩灾变机理与数据驱动稳定性分析
  • 批准号:
    52379106
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
基于潜在结果框架和高维脑影像数据的因果中介分析理论和方法学研究
  • 批准号:
    82304241
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于多组学数据整合分析挖掘华南籼稻外观品质基因及数据库构建
  • 批准号:
    32300549
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于非参数异质性重复观测数据的潜类分析方法研究
  • 批准号:
    12301348
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
融合检监测数据与有限元自动建模的桥梁结构分析评估理论
  • 批准号:
    52378289
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

CRII: AF: Efficiently Computing and Updating Topological Descriptors for Data Analysis
CRII:AF:高效计算和更新数据分析的拓扑描述符
  • 批准号:
    2348238
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Collaborative Research: Data-Driven Elastic Shape Analysis with Topological Inconsistencies and Partial Matching Constraints
协作研究:具有拓扑不一致和部分匹配约束的数据驱动的弹性形状分析
  • 批准号:
    2402555
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
CAREER: Machine learning, Mapping Spaces, and Obstruction Theoretic Methods in Topological Data Analysis
职业:拓扑数据分析中的机器学习、映射空间和障碍理论方法
  • 批准号:
    2415445
  • 财政年份:
    2024
  • 资助金额:
    --
  • 项目类别:
    Continuing Grant
Collaborative Research: RUI: HNDS-R: Stepping out of flatland: Complex networks, topological data analysis, and the progress of science
合作研究:RUI:HNDS-R:走出平地:复杂网络、拓扑数据分析和科学进步
  • 批准号:
    2318170
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
Elements: Sustained Innovation and Service by a GPU-accelerated Computation Tool for Applications of Topological Data Analysis
要素:GPU加速计算工具在拓扑数据分析应用中的持续创新和服务
  • 批准号:
    2310510
  • 财政年份:
    2023
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了