Singularity formations in non linear partial differential equations
非线性偏微分方程中的奇异性形成
基本信息
- 批准号:2278691
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:英国
- 项目类别:Studentship
- 财政年份:2019
- 资助国家:英国
- 起止时间:2019 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
In many non-linear evolutionary or stationary partial differential equations (PDEs), one observes the formation of singularities or some form of concentration of their solutions, as the time-variable or a parameter of the model approaches a limit value. In that case solutions become highly concentrated on lower-dimensional sets, thus losing smoothness and approaching a singular limit. This project is devoted to the study of formation of singularities for solutions of classes of non-linear PDEs. The questions the project intend to answer are: Do singularities occur? What is the mechanism that triggers the formation of singularities? Where (in space) and when (in time) do singularities develop? What is the shape of such singularities? What happens after the formation of singularities? The novel mathematical methodology that will be carried out during the project consists of identifying first the form and location of a possible singularity and using this to construct a good approximate solution. This first step requires a deep understanding of the model the PDEs are describing. The second step consists of designing an analytic strategy to produce an actual solution rather than an approximate one, for instance by using a perturbation argument. The student will consider some model PDEs which describe the motion of an incompressible fluid in dimension two, such as Euler equations, Navier-Stokes equations and the lake equations, as well as some parabolic critical non-linear PDEs. The initial aim is to construct solutions with bounded initial vorticity which produce a global solution whose gradient grows in time as a double exponential for the lake equation, using as a reference the paper 'Small scale creation for solutions of the incompressible two dimensional Euler equation' by Kiselev and Sverak. The plan is also to investigate the evolution of concentrated vorticities in the Navier-Stokes 2-dimensional model for small viscosity, when the initial vorticity is highly concentrated around a given number of points. The specific aim is to build such solutions using gluing techniques.
在许多非线性进化或固定部分偏微分方程(PDE)中,人们观察到奇点或某种形式的溶液浓度,因为该模型的时间变化或参数接近限制值。在这种情况下,解决方案高度集中在较低维度的集合上,从而失去平滑度并接近奇异极限。该项目致力于研究非线性PDE类别解决方案的奇异性的形成。项目打算回答的问题是:奇点会发生吗?触发奇异性形成的机制是什么? (在太空中)的何处以及何时(时间)何时发展?这种奇异性的形状是什么?形成奇点后会发生什么?在项目期间将进行的新型数学方法包括首先识别可能的奇异性的形式和位置,并使用它来构建良好的近似解决方案。第一步需要对PDE所描述的模型有深入的了解。第二步包括设计一种分析策略来产生实际解决方案而不是大约解决方案,例如使用扰动参数。学生将考虑一些模型PDE,这些模型描述了二维尺寸的不可压缩流体的运动,例如Euler方程,Navier-Stokes方程和湖泊方程,以及某些抛物线临界非线性PDES。最初的目的是构建具有有限的初始涡度的解决方案,该解决方案产生了一个全局溶液,其梯度随着湖泊方程的双重指数而生长,作为参考纸的“小规模创建”,用于kiselev和sverak的不可压缩的二维Euler方程。该计划还旨在调查小粘度的Navier-Stokes二维模型中浓缩涡度的演变,而初始涡度高度集中在给定数量的点围绕数量的点。具体的目的是使用胶合技术构建此类解决方案。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
其他文献
Metal nanoparticles entrapped in metal matrices.
- DOI:
10.1039/d1na00315a - 发表时间:
2021-07-27 - 期刊:
- 影响因子:4.7
- 作者:
- 通讯作者:
Stunting as a Risk Factor of Soil-Transmitted Helminthiasis in Children: A Literature Review.
- DOI:
10.1155/2022/8929025 - 发表时间:
2022 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Aspirin use is associated with decreased inpatient mortality in patients with COVID-19: A meta-analysis.
- DOI:
10.1016/j.ahjo.2022.100191 - 发表时间:
2022-08 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
Ged?chtnis und Wissenserwerb [Memory and knowledge acquisition]
- DOI:
10.1007/978-3-662-55754-9_2 - 发表时间:
2019-01-01 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
A Holistic Evaluation of CO2 Equivalent Greenhouse Gas Emissions from Compost Reactors with Aeration and Calcium Superphosphate Addition
曝气和添加过磷酸钙的堆肥反应器二氧化碳当量温室气体排放的整体评估
- DOI:
10.3969/j.issn.1674-764x.2010.02.010 - 发表时间:
2010-06 - 期刊:
- 影响因子:0
- 作者:
- 通讯作者:
的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('', 18)}}的其他基金
An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
- 批准号:
2901954 - 财政年份:2028
- 资助金额:
-- - 项目类别:
Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
- 批准号:
2896097 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
- 批准号:
2780268 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
- 批准号:
2908918 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
- 批准号:
2908693 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
- 批准号:
2908917 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
- 批准号:
2879438 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
- 批准号:
2890513 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
- 批准号:
2876993 - 财政年份:2027
- 资助金额:
-- - 项目类别:
Studentship
相似国自然基金
非完全合作网络下多无人机分组编队包围控制
- 批准号:62373097
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
非理想通信下UUV集群编队合围控制和拓扑优化技术
- 批准号:52101347
- 批准年份:2021
- 资助金额:24.00 万元
- 项目类别:青年科学基金项目
非理想通信下UUV集群编队合围控制和拓扑优化技术
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于电磁卫星编队的空间非合作目标消旋系统动力学与控制研究
- 批准号:52075118
- 批准年份:2020
- 资助金额:58 万元
- 项目类别:面上项目
基于内编队的引力参考敏感器研究
- 批准号:11572168
- 批准年份:2015
- 资助金额:66.0 万元
- 项目类别:面上项目
相似海外基金
Study for pattern formations and dynamics arising in reaction-diffusion systems with conservation law
用守恒定律研究反应扩散系统中的模式形成和动力学
- 批准号:
22K03444 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)
New modeling and mathematical analysis for pattern formations in life sciences
生命科学中模式形成的新建模和数学分析
- 批准号:
18H01139 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (B)
Mathematical analysis and reaction diffusion approximation for pattern formations with nonlocal interactions
具有非局域相互作用的图案形成的数学分析和反应扩散近似
- 批准号:
17K14228 - 财政年份:2017
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Young Scientists (B)
Relation between pattern formations and complex singularities of solutions of nonlinear partial differential equations
非线性偏微分方程解的模式结构与复奇点之间的关系
- 批准号:
16K13778 - 财政年份:2016
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Challenging Exploratory Research
Creation of diversified molecular formations and functions using artificial cross-linking and non-natural amino acids
使用人工交联和非天然氨基酸创建多样化的分子结构和功能
- 批准号:
26350970 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Grant-in-Aid for Scientific Research (C)