The Mathematics of Conformal Field Theory

共形场论的数学

基本信息

  • 批准号:
    2108968
  • 负责人:
  • 金额:
    --
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Studentship
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

Conformal field theories are quantum field theories whose measurable quantities are invariant under conformal changes of coordinates, that is, coordinate transformations which preserve angles, but not necessarily lengths. It turns out that in 2 space-time dimensions there are infinitely many independent (local) conformal transformations. This means that 2 dimensional conformal field theories have infinitely many constraints coming from conformal symmetry. These infinite constraints are what make it possible to solve (some) conformal field theories exactly and allow one to avoid using approximations or mathematically ill defined notions such as path integrals.Conformal invariance endows conformal field theories with a rich mathematical structure. This mathematical structure is what makes conformal field theory an active topic of mathematical research and exploring it will form the core of this project
共形场论是一种量子场论,其可测量量在坐标共形变化下保持不变,即保持角度但不一定保持长度的坐标变换。事实证明,在 2 个时空维度中存在无限多个独立(局部)共形变换。这意味着二维共形场论有无数来自共形对称性的约束。这些无限约束使得精确求解(某些)共形场论成为可能,并允许人们避免使用近似或数学上定义错误的概念(例如路径积分)。共形不变性赋予共形场论丰富的数学结构。这种数学结构使共形场论成为数学研究的活跃主题,对其进行探索将构成该项目的核心

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

其他文献

Products Review
  • DOI:
    10.1177/216507996201000701
  • 发表时间:
    1962-07
  • 期刊:
  • 影响因子:
    2.6
  • 作者:
  • 通讯作者:
Farmers' adoption of digital technology and agricultural entrepreneurial willingness: Evidence from China
  • DOI:
    10.1016/j.techsoc.2023.102253
  • 发表时间:
    2023-04
  • 期刊:
  • 影响因子:
    9.2
  • 作者:
  • 通讯作者:
Digitization
References
Putrescine Dihydrochloride
  • DOI:
    10.15227/orgsyn.036.0069
  • 发表时间:
    1956-01-01
  • 期刊:
  • 影响因子:
    0
  • 作者:
  • 通讯作者:

的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('', 18)}}的其他基金

An implantable biosensor microsystem for real-time measurement of circulating biomarkers
用于实时测量循环生物标志物的植入式生物传感器微系统
  • 批准号:
    2901954
  • 财政年份:
    2028
  • 资助金额:
    --
  • 项目类别:
    Studentship
Exploiting the polysaccharide breakdown capacity of the human gut microbiome to develop environmentally sustainable dishwashing solutions
利用人类肠道微生物群的多糖分解能力来开发环境可持续的洗碗解决方案
  • 批准号:
    2896097
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
A Robot that Swims Through Granular Materials
可以在颗粒材料中游动的机器人
  • 批准号:
    2780268
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Likelihood and impact of severe space weather events on the resilience of nuclear power and safeguards monitoring.
严重空间天气事件对核电和保障监督的恢复力的可能性和影响。
  • 批准号:
    2908918
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Proton, alpha and gamma irradiation assisted stress corrosion cracking: understanding the fuel-stainless steel interface
质子、α 和 γ 辐照辅助应力腐蚀开裂:了解燃料-不锈钢界面
  • 批准号:
    2908693
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Field Assisted Sintering of Nuclear Fuel Simulants
核燃料模拟物的现场辅助烧结
  • 批准号:
    2908917
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Assessment of new fatigue capable titanium alloys for aerospace applications
评估用于航空航天应用的新型抗疲劳钛合金
  • 批准号:
    2879438
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Developing a 3D printed skin model using a Dextran - Collagen hydrogel to analyse the cellular and epigenetic effects of interleukin-17 inhibitors in
使用右旋糖酐-胶原蛋白水凝胶开发 3D 打印皮肤模型,以分析白细胞介素 17 抑制剂的细胞和表观遗传效应
  • 批准号:
    2890513
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
CDT year 1 so TBC in Oct 2024
CDT 第 1 年,预计 2024 年 10 月
  • 批准号:
    2879865
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship
Understanding the interplay between the gut microbiome, behavior and urbanisation in wild birds
了解野生鸟类肠道微生物组、行为和城市化之间的相互作用
  • 批准号:
    2876993
  • 财政年份:
    2027
  • 资助金额:
    --
  • 项目类别:
    Studentship

相似国自然基金

超声耦合液固界面反应构筑固态锂电池“共形”界面研究
  • 批准号:
    52302238
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
高斯乘性混沌与共形场论
  • 批准号:
    12301164
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
柔性共形曲面结构力-声-电耦合增强微应变敏感机理研究
  • 批准号:
    52375571
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无限李共形超代数的若干问题研究
  • 批准号:
    12361006
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    RGPIN-2022-04104
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    DGECR-2022-00449
  • 财政年份:
    2022
  • 资助金额:
    --
  • 项目类别:
    Discovery Launch Supplement
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2018
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Discovery Grants Program - Individual
Search for a/the correct framework(s) of quantum field theories
寻找量子场论的正确框架
  • 批准号:
    17H04837
  • 财政年份:
    2017
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了