The mathematics of conformal field theory: a unified approach

共形场论的数学:统一方法

基本信息

  • 批准号:
    RGPIN-2022-04104
  • 负责人:
  • 金额:
    $ 1.38万
  • 依托单位:
  • 依托单位国家:
    加拿大
  • 项目类别:
    Discovery Grants Program - Individual
  • 财政年份:
    2022
  • 资助国家:
    加拿大
  • 起止时间:
    2022-01-01 至 2023-12-31
  • 项目状态:
    已结题

项目摘要

This research program aims to unite three mathematical disciplines, each using its own language to rigorously describe conformal field theory, an area of physics with important applications to string theory, statistical mechanics, and condensed matter physics. The three mathematical approaches to the theory are as follows. Vertex algebras encode the symmetries of a two-dimensional field theory, while chiral algebras encode the collisions between local operators in the theory, and factorization algebras encode the quantum observables of the theory. (Observables are simply things that one can measure in the system, such as mass or velocity of particles.) Mathematically, vertex algebras are algebraic objects, while chiral and factorization algebras are objects in different flavours of geometry.   Because each of the theories approaches the physics from a different perspective, and uses a different set of mathematical techniques, they each have their own strengths and weaknesses. Although each approach is insightful on its own, it is difficult for mathematicians trained in one approach to communicate with those working with the others because they use very different mathematical languages. By building bridges between the three perspectives and combining them, this research program will allow researchers in all three fields to harness the strengths of each approach while overcoming their weaknesses, and thus will lay the foundation for a still more powerful approach to this important subject. An expected outcome of the research program is a mathematical Rosetta Stone, enabling experts in the three disciplines to communicate effectively for the first time and to join forces in their work. In the long term, this will enable me, as well as other researchers, to use new tools to solve a range of long-standing problems. Students and post-doctoral researchers trained in this program will become familiar with the wide range of mathematical techniques needed to understand all three approaches, and will be equipped to continue research in any of these three fields or in a variety of related fields.
该研究计划旨在联合三个数学学科,每个学科都使用自己的语言来严格描述共形场论,这是一个对弦理论、统计力学和凝聚态物理有重要应用的物理领域,这三种数学方法都适用于该理论。顶点代数编码二维场论的对称性,手性代数编码理论中局部算子之间的碰撞,分解代数编码理论的量子可观测量。 (可观测量只是系统中可以测量的东西,例如粒子的质量或速度。)在数学上,顶点代数是代数对象,而手征代数和因式分解代数是不同几何风格的对象。​因为每种理论都接近。它们从不同的角度研究物理学,并使用不同的数学技术,它们各自有自己的优点和缺点,尽管每种方法本身都很有洞察力,但对于受过训练的数学家来说却很困难。一种与其他人进行交流的方法,因为他们使用非常不同的数学语言,通过在三种观点之间建立桥梁并将它们结合起来,该研究项目将使所有三个领域的研究人员能够利用每种方法的优点,同时克服其缺点。 ,从而将为这一重要课题的更强大的方法奠定基础,该研究计划的预期成果是数学罗塞塔石碑,使三个学科的专家首次能够有效地沟通并在他们的研究中联手。从长远来看,这也将使我能够工作。与其他研究人员一样,使用新工具来解决一系列长期存在的问题在该项目中接受培训的学生和博士后研究人员将熟悉理解所有三种方法所需的广泛数学技术,并将具备继续在这三个领域或各种相关领域中的任何一个领域进行研究。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Cliff, Emily其他文献

Cliff, Emily的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Cliff, Emily', 18)}}的其他基金

The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    DGECR-2022-00449
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Launch Supplement
Categorification of superalgebras
超代数的分类
  • 批准号:
    410287-2011
  • 财政年份:
    2014
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Categorification of superalgebras
超代数的分类
  • 批准号:
    410287-2011
  • 财政年份:
    2013
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Categorification of superalgebras
超代数的分类
  • 批准号:
    410287-2011
  • 财政年份:
    2012
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Categorification of superalgebras
超代数的分类
  • 批准号:
    410287-2011
  • 财政年份:
    2011
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Postgraduate Scholarships - Doctoral
Algebraic Geometry
代数几何
  • 批准号:
    393987-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Alexander Graham Bell Canada Graduate Scholarships - Master's
Two-parameter quantum groups and Schur-Weyl duality
双参数量子群和 Schur-Weyl 对偶性
  • 批准号:
    398830-2010
  • 财政年份:
    2010
  • 资助金额:
    $ 1.38万
  • 项目类别:
    University Undergraduate Student Research Awards
Schubert varieties
舒伯特变种
  • 批准号:
    382845-2009
  • 财政年份:
    2009
  • 资助金额:
    $ 1.38万
  • 项目类别:
    University Undergraduate Student Research Awards

相似国自然基金

面向机器人复杂操作的接触形面和抓取策略共适应学习
  • 批准号:
    52305030
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
无限李共形超代数的若干问题研究
  • 批准号:
    12361006
  • 批准年份:
    2023
  • 资助金额:
    27 万元
  • 项目类别:
    地区科学基金项目
基于薄膜IGZO和LCP的共形太赫兹智能超表面的研究
  • 批准号:
    62371272
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
利用基于范畴论的张量网络重构共形场论
  • 批准号:
    12305080
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
共形电子气溶胶喷墨打印的纳米导电油墨高频声场聚焦机理及控制方法
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

The mathematics of conformal field theory: a unified approach
共形场论的数学:统一方法
  • 批准号:
    DGECR-2022-00449
  • 财政年份:
    2022
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Launch Supplement
The Mathematics of Conformal Field Theory
共形场论的数学
  • 批准号:
    2108968
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Studentship
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2018
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Mathematics of Conformal Field Theory
共形场论数学
  • 批准号:
    RGPIN-2014-06494
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Discovery Grants Program - Individual
Search for a/the correct framework(s) of quantum field theories
寻找量子场论的正确框架
  • 批准号:
    17H04837
  • 财政年份:
    2017
  • 资助金额:
    $ 1.38万
  • 项目类别:
    Grant-in-Aid for Young Scientists (A)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了