Particle Theory at the Higgs Centre
希格斯中心的粒子理论
基本信息
- 批准号:ST/X000494/1
- 负责人:
- 金额:$ 267.41万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are two types of fundamental forces in Nature: those responsible for particle interactions at subatomic scales and those responsible for the large scale structure of the universe. The former is described by Quantum Field Theories (QFT) such as the Standard Model(SM). Currently, our understanding of Nature at the most fundamental level is at the crossroads. In 2012, the LHC at CERN collided protons at higher energies than ever before, and observed sufficient collisions to find a significant excess, consistent with the Higgs boson of the SM. Over recent years it has become evident that this is indeed a SM Higgs, responsible for generating masses for vector bosons, leptons and quarks. Currently data at even higher energies is being taken at LHC, and it should soon become clearer whether there is more physics at the TeV scale, or whether we need to build machines capable of going to even higher energies. At large scales the European Planck satellite has given the most precise measurements of the cosmic microwave background (CMB) and it is an open question to determine the particle physics model best capable of describing the physics underlying the large scale properties of the Universe. In 2016 the detection of gravitational waves was announced by LIGO, marking the start of a new chapter in astrophysics. Thus at both small and large scales, this is a transformative time in fundamental physics.Our programme of research at the Higgs Centre for Theoretical Physics in Edinburgh is designed to be at the forefront of these new discoveries. Specifically, we provide theoretical calculations, using pen and paper, and the most powerful supercomputers, of both the huge number of background processes to be seen at LHC due to known physics, and the tiny signals expected in various models of new physics, in order to discriminate between signal and background, and thus maximise the discovery potential of the LHC. In parallel, we will attempt to understand the more complete picture of all the forces of Nature that may begin to emerge. The fundamental force responsible for large scale structure is described by Einstein's General Theory of Relativity (GR). During the last three decades, string theory has emerged as a conceptually rich theoretical framework reconciling both GR and QFT. The low-energy limit of String Theory is supergravity (SUGRA), a nontrivial extension of GR in which the universe is described by a spacetime with additional geometric data. Members of the group have pioneered approaches to deriving observable cosmological consequences of String Theory, to studying how the geometrical notions on which GR is predicated change at very small ("stringy") distance scales. The group is also engaged in using these theories to improve calculations in existing field theories. Recent discoveries of relationships between QCD amplitudes and GR, known as the 'double copy', offer new insight into gravitational phenomena.In summary, our research will impinge on both theoretical and computational aspects relevant to probing the phenomenology of LHC data, and will also encompass a wide range of topics in QFT and gravitational aspects of String Theory, impinging on cosmology, particle physics and on the very nature of physics itself.
自然界中有两种基本力:负责亚原子尺度粒子相互作用的力和负责宇宙大尺度结构的力。前者由量子场论(QFT)如标准模型(SM)来描述。目前,我们对自然最基本层面的理解正处于十字路口。 2012年,欧洲核子研究中心的大型强子对撞机以比以往更高的能量碰撞质子,并观察到足够的碰撞,发现了明显的过剩,这与SM的希格斯玻色子一致。近年来,越来越明显的是,这确实是一个 SM 希格斯粒子,负责产生矢量玻色子、轻子和夸克的质量。目前大型强子对撞机正在获取更高能量的数据,很快就会变得更加清楚,是否有更多 TeV 尺度的物理现象,或者我们是否需要建造能够达到更高能量的机器。在大尺度上,欧洲普朗克卫星对宇宙微波背景(CMB)进行了最精确的测量,确定最能描述宇宙大尺度特性背后的物理现象的粒子物理模型是一个悬而未决的问题。 2016年,LIGO宣布探测到引力波,标志着天体物理学新篇章的开始。因此,无论是小尺度还是大尺度,这都是基础物理学的变革时期。我们在爱丁堡希格斯理论物理中心的研究项目旨在走在这些新发现的最前沿。具体来说,我们使用笔和纸以及最强大的超级计算机,对大型强子对撞机上由于已知物理学而看到的大量后台过程以及各种新物理学模型中预期的微小信号进行理论计算,以便区分信号和背景,从而最大限度地发挥大型强子对撞机的发现潜力。与此同时,我们将尝试更全面地了解可能开始出现的所有自然力量。爱因斯坦的广义相对论(GR)描述了造成大尺度结构的基本力。在过去的三十年里,弦理论已经成为一个概念丰富的理论框架,协调了广义相对论和量子泛函理论。弦理论的低能量极限是超引力(SUGRA),它是广义相对论的一个重要扩展,其中宇宙由带有附加几何数据的时空来描述。该小组的成员开创了推导弦理论可观测宇宙学结果的方法,研究了广义相对论所依据的几何概念如何在非常小的(“弦”)距离尺度上变化。该小组还致力于利用这些理论来改进现有场论的计算。最近发现的 QCD 振幅和 GR 之间的关系(称为“双拷贝”),为引力现象提供了新的见解。总之,我们的研究将影响与探测 LHC 数据现象学相关的理论和计算方面,并且还将影响涵盖了 QFT 和弦理论引力方面的广泛主题,对宇宙学、粒子物理学以及物理学本身的本质产生了影响。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Ball其他文献
Helpful Answers to Modal and Hypothetical Questions
对模态和假设问题的有用答案
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
A. Roeck;Richard Ball;Keith Brown;C. Fox;Marjolein Groefsema;Nadim Obeid;R. Turner - 通讯作者:
R. Turner
MITOCHONDRIAL AUTONOMY
线粒体自主性
- DOI:
- 发表时间:
1972 - 期刊:
- 影响因子:7.8
- 作者:
H. Bosmann;M. Myers;Delena Dehond;Richard Ball;K. Case - 通讯作者:
K. Case
Richard Ball的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Ball', 18)}}的其他基金
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/T000600/1 - 财政年份:2020
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/P000630/1 - 财政年份:2017
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/L000458/1 - 财政年份:2014
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant
Experimentally verified atomistic modelling of lime in construction materials
经过实验验证的建筑材料中石灰的原子模型
- 批准号:
EP/K025597/1 - 财政年份:2013
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant
Particle Theory at the Tait Institute
泰特研究所的粒子理论
- 批准号:
ST/J000329/1 - 财政年份:2011
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant
An Electrochemical Approach to Study Carbonation of Novel Lime Based Materials
研究新型石灰基材料碳化的电化学方法
- 批准号:
EP/I001204/1 - 财政年份:2010
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant
相似国自然基金
代数几何和算术几何中的Hodge理论与Higgs丛理论
- 批准号:12331002
- 批准年份:2023
- 资助金额:193 万元
- 项目类别:重点项目
Yang-Mills-Higgs理论中微分方程的磁单极子解
- 批准号:12101197
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
结合引力波观测和粒子物理实验关于基本相互作用性质的理论研究
- 批准号:11875072
- 批准年份:2018
- 资助金额:60.0 万元
- 项目类别:面上项目
标准模型希格斯粒子性质及TeV新物理理论中希格斯部分结构的唯象研究
- 批准号:11775211
- 批准年份:2017
- 资助金额:64.0 万元
- 项目类别:面上项目
在μν超对称标准模型中B物理与Higgs物理的研究
- 批准号:11705045
- 批准年份:2017
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Probing new physics theory by the fusion of Higgs sector physics and dark matter physics
希格斯扇区物理与暗物质物理融合探索新物理理论
- 批准号:
21K03571 - 财政年份:2021
- 资助金额:
$ 267.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/T000600/1 - 财政年份:2020
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant
Grand Unified Theory indicated by Higgs Mass and Study of Proton Decay
希格斯质量表明的大统一理论与质子衰变研究
- 批准号:
19K03865 - 财政年份:2019
- 资助金额:
$ 267.41万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/P000363/1 - 财政年份:2017
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/P000630/1 - 财政年份:2017
- 资助金额:
$ 267.41万 - 项目类别:
Research Grant