Experimentally verified atomistic modelling of lime in construction materials
经过实验验证的建筑材料中石灰的原子模型
基本信息
- 批准号:EP/K025597/1
- 负责人:
- 金额:$ 82.33万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Since antiquity the construction industry has been using lime based binders to manufacture mortars, plasters and renders...Despite this history there is still a lack of fundamental understanding of the hardening processes and how these influence time dependent mechanical properties. In addition dolomitic limes, containing magnesium, exhibit enhanced properties when compared to their pure lime counterparts, however there is limited knowledge of the underlying reasons.Lime based mortars are ideal candidates to replace cement mortars in many applications where lower strength is an advantage such as new build housing, forms of construction utilising organic fillers such as lime-hemp, and conservation and restoration applications. Indeed lime mortars offer many advantages over cement in terms of moisture permittivity, ability to accommodate movement, self-healing properties and ability to sequester carbon dioxide. Cementious binders are produced at much higher temperatures compared to lime and have large carbon dioxide emissions associated with their manufacture.Atomistic modelling provides a unique opportunity to probe these mechanisms at a fundamental level thereby elucidating the processes responsible for developing the properties of industrial importance. Many existing and past studies of building lime binders have focused on bulk properties for instance through large scale bulk property testing, whilst not taking into account atom level processes. In recent years the cement industry has employed atomistic modelling of hydrated silicates as a means of understanding material behaviour. Recent studies have demonstrated that the morphology and composition of a lime crystal can influence the carbonation process, and by association mechanical behaviour. In addition magnesium containing dolomitic limes show improved performance in many respects including strength development. Rate of carbonation is an extremely important issue as this can dictate the speed at which a building can be erected and therefore the associated costs. The ability to improve the carbonation rate and therefore hardening rate through control of composition and morphology will lead to enhanced products with better environmental credentials. In the first instance this proposal seeks to develop atomistic models to describe the important aspects of lime binder behaviour and validate these against laboratory samples. Atomistic models will generate Raman spectra and X-ray diffraction patterns for direct comparison with experimental measurements. These initial models will then be developed further to investigate firstly carbonation and then time dependent and plastic mechanical properties. Additionally the research will investigate the underlying reasons for the improved performance observed in magnesium containing dolomitic limes. The project is expected to bring long term benefits to the construction industry over the coming decades. In the shorter term industry will benefit through planned workshops and site visits which will showcase the application of atomistic modelling to lime manufacturers. The project will support the development of enhanced projects through the new knowledge gained.
自古以来,建筑行业一直使用石灰基粘合剂来制造砂浆、灰泥和抹灰……尽管有这样的历史,但人们仍然缺乏对硬化过程以及这些过程如何影响时间依赖性机械性能的基本了解。此外,与纯石灰相比,含镁的白云石石灰表现出增强的性能,但对其根本原因的了解有限。在许多以较低强度为优势的应用中,石灰基砂浆是替代水泥砂浆的理想选择,例如新建住房、利用石灰麻等有机填料的建筑形式以及保护和修复应用。事实上,石灰砂浆在湿度介电常数、适应运动的能力、自愈特性和封存二氧化碳的能力方面比水泥具有许多优势。与石灰相比,水泥粘合剂的生产温度要高得多,并且在制造过程中会产生大量二氧化碳排放。原子建模提供了一个独特的机会,可以从根本上探讨这些机制,从而阐明负责开发具有工业重要性的特性的过程。许多现有和过去的建筑石灰粘合剂研究都集中在整体性能上,例如通过大规模整体性能测试,而没有考虑原子级过程。近年来,水泥行业采用水合硅酸盐的原子建模作为理解材料行为的手段。最近的研究表明,石灰晶体的形态和成分可以影响碳酸化过程以及相关的机械行为。此外,含镁白云石石灰在包括强度发展在内的许多方面表现出改进的性能。碳化率是一个极其重要的问题,因为它决定了建筑物建造的速度以及相关的成本。通过控制成分和形态来提高碳化速率和硬化速率的能力将导致增强的产品具有更好的环境信用。首先,该提案旨在开发原子模型来描述石灰粘合剂行为的重要方面,并根据实验室样品对其进行验证。原子模型将生成拉曼光谱和 X 射线衍射图,以便与实验测量直接进行比较。然后将进一步开发这些初始模型,首先研究碳化,然后研究时间依赖性和塑性机械性能。此外,该研究还将调查含镁白云石石灰性能改善的根本原因。该项目预计将在未来几十年为建筑业带来长期利益。在短期内,行业将通过计划的研讨会和现场参观而受益,这些研讨会和现场参观将向石灰制造商展示原子建模的应用。该项目将通过获得的新知识支持增强项目的开发。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Environmental performance of nano-structured Ca(OH)2/TiO2 photocatalytic coatings for buildings
- DOI:10.1016/j.buildenv.2015.05.028
- 发表时间:2015-10-01
- 期刊:
- 影响因子:7.4
- 作者:Nuno, Manuel;Pesce, Giovanni L.;Ball, Richard J.
- 通讯作者:Ball, Richard J.
Experimental Investigation for the Development and Validation of Atomistic Models in Construction
施工中原子模型的开发和验证实验研究
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Pesce, G
- 通讯作者:Pesce, G
An experimental and computational study to resolve the composition of dolomitic lime
解析白云石石灰成分的实验和计算研究
- DOI:10.1039/c5ra25451e
- 发表时间:2016
- 期刊:
- 影响因子:3.9
- 作者:Grant J
- 通讯作者:Grant J
Lime based materials in construction. Experimental investigations for the development and validation of atomistic models
建筑中的石灰基材料。
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:Ball R J
- 通讯作者:Ball R J
An atomistic building block description of C-S-H - Towards a realistic C-S-H model
- DOI:10.1016/j.cemconres.2018.01.007
- 发表时间:2018-05-01
- 期刊:
- 影响因子:11.4
- 作者:Mohamed, Aslam Kunhi;Parker, Stephen C.;Galmarini, Sandra
- 通讯作者:Galmarini, Sandra
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Richard Ball其他文献
Helpful Answers to Modal and Hypothetical Questions
对模态和假设问题的有用答案
- DOI:
- 发表时间:
1991 - 期刊:
- 影响因子:0
- 作者:
A. Roeck;Richard Ball;Keith Brown;C. Fox;Marjolein Groefsema;Nadim Obeid;R. Turner - 通讯作者:
R. Turner
MITOCHONDRIAL AUTONOMY
线粒体自主性
- DOI:
- 发表时间:
1972 - 期刊:
- 影响因子:7.8
- 作者:
H. Bosmann;M. Myers;Delena Dehond;Richard Ball;K. Case - 通讯作者:
K. Case
Richard Ball的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Richard Ball', 18)}}的其他基金
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/X000494/1 - 财政年份:2023
- 资助金额:
$ 82.33万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/T000600/1 - 财政年份:2020
- 资助金额:
$ 82.33万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/P000630/1 - 财政年份:2017
- 资助金额:
$ 82.33万 - 项目类别:
Research Grant
Particle Theory at the Higgs Centre
希格斯中心的粒子理论
- 批准号:
ST/L000458/1 - 财政年份:2014
- 资助金额:
$ 82.33万 - 项目类别:
Research Grant
Particle Theory at the Tait Institute
泰特研究所的粒子理论
- 批准号:
ST/J000329/1 - 财政年份:2011
- 资助金额:
$ 82.33万 - 项目类别:
Research Grant
An Electrochemical Approach to Study Carbonation of Novel Lime Based Materials
研究新型石灰基材料碳化的电化学方法
- 批准号:
EP/I001204/1 - 财政年份:2010
- 资助金额:
$ 82.33万 - 项目类别:
Research Grant
相似国自然基金
乳腺癌前哨淋巴结转移状态的预测:前期已筛选的分子标志物的验证及术中快速诊断方法的建立
- 批准号:81602322
- 批准年份:2016
- 资助金额:17.0 万元
- 项目类别:青年科学基金项目
相似海外基金
SAFER - Secure Foundations: Verified Systems Software Above Full-Scale Integrated Semantics
SAFER - 安全基础:高于全面集成语义的经过验证的系统软件
- 批准号:
EP/Y035976/1 - 财政年份:2024
- 资助金额:
$ 82.33万 - 项目类别:
Research Grant
Collaborative Research: SHF: Medium: High-Performance, Verified Accelerator Programming
合作研究:SHF:中:高性能、经过验证的加速器编程
- 批准号:
2313024 - 财政年份:2023
- 资助金额:
$ 82.33万 - 项目类别:
Standard Grant
FMitF: Collaborative Research: RedLeaf: Verified Operating Systems in Rust
FMITF:协作研究:RedLeaf:经过验证的 Rust 操作系统
- 批准号:
2313411 - 财政年份:2023
- 资助金额:
$ 82.33万 - 项目类别:
Standard Grant
Collaborative Research: FMitF: Track I: Towards Verified Robustness and Safety in Power System-Informed Neural Networks
合作研究:FMitF:第一轨:实现电力系统通知神经网络的鲁棒性和安全性验证
- 批准号:
2319242 - 财政年份:2023
- 资助金额:
$ 82.33万 - 项目类别:
Standard Grant
EAGER: SHF: Verified Audit Layers for Safe Machine Learning
EAGER:SHF:用于安全机器学习的经过验证的审计层
- 批准号:
2318724 - 财政年份:2023
- 资助金额:
$ 82.33万 - 项目类别:
Standard Grant