Quantum-enhanced interferometry for new physics

新物理学的量子增强干涉测量

基本信息

  • 批准号:
    ST/T006609/1
  • 负责人:
  • 金额:
    $ 209.19万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2020
  • 资助国家:
    英国
  • 起止时间:
    2020 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern physics explains a stunning variety of phenomena from the smallest of scales to the largest and has already revolutionized the world! Lasers, semi-conductors, and transistors are at the core of our laptops, cellphones, and medical equipment. And every year, new novel quantum technologies are being developed within the National Quantum Technology Programme in the UK and throughout the world that impact our everyday life and the fundamental physics research that leads to new discoveries. Quantum states of light have recently improved the sensitivity of gravitational-wave detectors, whose detections to date have enthralled the public, and superconducting transition-edge-sensors are now used in astronomy experiments that make high-resolution images of the universe. Despite the successes of modern physics, several profound and challenging problems remain. Our consortium will use recent advances in quantum technologies to address two of the most pressing questions: (i) what is the nature of dark matter and (ii) how can quantum mechanics be united with Einstein's theory of relativity?The first research direction is motivated by numerous observations which suggest that a significant fraction of the matter in galaxies is not directly observed by optical telescopes. This mysterious matter interacts gravitationally but does not seem to emit any light. Understanding the nature of dark matter will shed light on the history of the universe and the formation of galaxies and will trigger new areas of research in fundamental and possibly applied physics. Despite its remarkable importance, the nature of dark matter is still a mystery. A number of state-of-the-art experiments world-wide are looking for dark matter candidates with no luck to date. The candidate we propose to search for are axions and axion-like-particles (ALPs). These particles are motivated by outstanding questions in particle physics and may account for a significant part, if not all, of dark matter. First, we propose an experiment which will rely on quantum states of light and will detect a dark matter signal or improve the existing limits on the axion-photon coupling by a few orders of magnitude for a large range of axion masses. Second, we will build a quantum sensor which will improve the sensitivity of the international 100-m long ALPS detector of axion-like-particles by a factor of 3 - 10.Our second line of research is devoted to the nature of space and time. Recent announcements of Google's Sycamore quantum computer and the detection of gravitational waves have provided additional evidence to the long list of successful experimental tests of quantum mechanics and Einstein's theory of relativity. But how can gravity be united with quantum mechanics? To seek answers that inform this question, we propose to study two quantum aspects of space-time. First, we will experimentally investigate the holographic principle, which states that the information content of a volume can be encoded on its boundary. We will exploit quantum states of light and build two ultra-sensitive laser interferometers that will investigate possible correlations between different regions of space with unprecedented sensitivity. Second, we will search for signatures of semiclassical gravity models that approximately solve the quantum gravity problems. We will build two optical interferometers and search for the first time for signatures of semiclassical gravity in the motion of the cryogenic silicon mirrors.Answering these challenging questions of fundamental physics with the aid of modern quantum technologies has the potential to open new horizons for physics research and to reach a new level of understanding of the world we live in. The proposed research directions share the common technological platform of quantum-enhanced interferometry and benefit from the diverse skills of the researchers involved in the programme.
现代物理学解释了从最小尺度到最大尺度的各种令人惊叹的现象,并且已经彻底改变了世界!激光器、半导体和晶体管是我们笔记本电脑、手机和医疗设备的核心。每年,英国和世界各地的国家量子技术计划都会开发新的量子技术,这些技术影响着我们的日常生活以及带来新发现的基础物理研究。光的量子态最近提高了引力波探测器的灵敏度,迄今为止,引力波探测器的探测结果已经引起了公众的关注,超导跃迁边缘传感器现在被用于天文学实验,拍摄宇宙的高分辨率图像。尽管现代物理学取得了成功,但仍然存在一些深刻且具有挑战性的问题。我们的联盟将利用量子技术的最新进展来解决两个最紧迫的问题:(i)暗物质的本质是什么以及(ii)量子力学如何与爱因斯坦相对论相结合?第一个研究方向是动机大量观测结果表明,星系中很大一部分物质并没有被光学望远镜直接观测到。这种神秘物质与引力相互作用,但似乎不发出任何光。了解暗物质的本质将揭示宇宙的历史和星系的形成,并将引发基础物理学和可能的应用物理学的新研究领域。尽管暗物质非常重要,但其本质仍然是一个谜。世界各地的许多最先进的实验都在寻找暗物质候选者,但迄今为止还没有运气。我们建议寻找的候选者是轴子和类轴子粒子(ALP)。这些粒子是由粒子物理学中的突出问题引发的,并且可能占暗物质的重要部分(如果不是全部)。首先,我们提出了一项实验,该实验将依赖于光的量子态,并检测暗物质信号或将轴子-光子耦合的现有限制提高几个数量级,以适应大范围的轴子质量。其次,我们将建造一个量子传感器,它将把国际100米长的ALPS轴子粒子探测器的灵敏度提高3-10倍。我们的第二个研究方向是空间和时间的本质。 。谷歌最近宣布的 Sycamore 量子计算机和引力波的探测为量子力学和爱因斯坦相对论的一长串成功的实验测试提供了额外的证据。但引力如何与量子力学结合起来呢?为了寻求这个问题的答案,我们建议研究时空的两个量子方面。首先,我们将通过实验研究全息原理,该原理指出体积的信息内容可以在其边界上进行编码。我们将利用光的量子态并建造两个超灵敏激光干涉仪,以前所未有的灵敏度研究空间不同区域之间可能的相关性。其次,我们将寻找近似解决量子引力问题的半经典引力模型的特征。我们将建造两个光学干涉仪,并首次寻找低温硅镜运动中的半经典引力特征。借助现代量子技术回答这些具有挑战性的基础物理问题有可能为物理研究开辟新的视野并达到对我们生活的世界的新认识水平。拟议的研究方向共享量子增强干涉测量的通用技术平台,并受益于参与该计划的研究人员的多样化技能。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Narrowband searches for continuous and long-duration transient gravitational waves from known pulsars in the LIGO-Virgo third observing run
在 LIGO-Virgo 第三次观测中,窄带搜索来自已知脉冲星的连续且长时间的瞬态引力波
  • DOI:
    10.3847/1538-4357/ac6ad0
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    B. P. Abbott;H. Shinkai;LIGO-Virgo-KAGRA collaboration
  • 通讯作者:
    LIGO-Virgo-KAGRA collaboration
Search for Subsolar-Mass Binaries in the First Half of Advanced LIGO’s and Advanced Virgo’s Third Observing Run
在 Advanced LIGO 和 Advanced Virgo 第三次观测运行的前半段中搜索太阳质量以下的双星
  • DOI:
    10.1103/physrevlett.129.061104
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    8.6
  • 作者:
    Abbott, R.;Abbott, T. D.;Acernese, F.;Ackley, K.;Adams, C.;Adhikari, N.;Adhikari, R. X.;Adya, V. B.;Affeldt, C.;Agarwal, D.
  • 通讯作者:
    Agarwal, D.
Searches for Gravitational Waves from Known Pulsars at Two Harmonics in the Second and Third LIGO-Virgo Observing Runs
在第二次和第三次 LIGO-Virgo 观测运行中搜索来自已知脉冲星的两个谐波的引力波
  • DOI:
    10.3847/1538-4357/ac6acf
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Abbott, R.;Abe, H.;Acernese, F.;Ackley, K.;Adhikari, N.;Adhikari, R. X.;Adkins, V. K.;Adya, V. B.;Affeldt, C.;Agarwal, D.
  • 通讯作者:
    Agarwal, D.
Enhancing the sensitivity of interferometers with stable phase-insensitive quantum filters
使用稳定的相位不敏感量子滤波器提高干涉仪的灵敏度
  • DOI:
    10.1103/physrevd.106.022007
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    5
  • 作者:
    Dmitriev A
  • 通讯作者:
    Dmitriev A
A cryogenic silicon interferometer for gravitational-wave detection
  • DOI:
    10.1088/1361-6382/ab9143
  • 发表时间:
    2020-08-20
  • 期刊:
  • 影响因子:
    3.5
  • 作者:
    Adhikari, R. X.;Arai, K.;Zhao, C.
  • 通讯作者:
    Zhao, C.
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Denis Martynov其他文献

DarkGEO: A Large-Scale Laser-Interferometric Axion Detector
DarkGEO:大型激光干涉轴子探测器
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    Joscha Heinze;Alex Gill;A. Dmitriev;Jiri Smetana;T. Yan;Vincent Boyer;Denis Martynov;H. Grote;James Lough;A. Ejlli;Guido Mueller
  • 通讯作者:
    Guido Mueller

Denis Martynov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Denis Martynov', 18)}}的其他基金

Quantum-enhanced Interferometry for New Physics: QI-extension proposal
新物理学的量子增强干涉测量:QI 扩展提案
  • 批准号:
    ST/W006375/1
  • 财政年份:
    2022
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Research Grant
Phase-insensitive amplifier for quantum measurements
用于量子测量的相敏放大器
  • 批准号:
    EP/V048872/1
  • 财政年份:
    2021
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Research Grant
Coating thermal noise measurement with a multimode resonator
使用多模谐振器测量涂层热噪声
  • 批准号:
    EP/V008617/1
  • 财政年份:
    2021
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Research Grant
Gravitational Wave Astronomy at the University of Birmingham, STFC Equipment Call 2018
伯明翰大学引力波天文学,STFC 设备电话会议 2018
  • 批准号:
    ST/S002154/1
  • 财政年份:
    2018
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Research Grant

相似国自然基金

基于表面等离激元纳腔/CRISPR-Cas12a异质结荧光增强效应的生物传感研究
  • 批准号:
    62305229
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
硫化氢合成酶DCD和LCD的S-亚硝基化修饰增强番茄幼苗的耐镉性
  • 批准号:
    32360743
  • 批准年份:
    2023
  • 资助金额:
    33 万元
  • 项目类别:
    地区科学基金项目
基于射频指纹物理特征的低轨卫星物联网增强安全认证技术研究
  • 批准号:
    62302082
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
C17ORF49/BPTF/BORIS通过增强子重编程促进ERα阳性乳腺癌内分泌治疗耐药的功能及分子机制研究
  • 批准号:
    82303138
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
超级增强子驱动hnRNP D介导脂代谢重编程促进外周T细胞淋巴瘤阿霉素耐药的机制研究
  • 批准号:
    82300218
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Increasing the science reach for Quantum Enhanced Interferometry.
扩大量子增强干涉测量的科学范围。
  • 批准号:
    ST/W006456/1
  • 财政年份:
    2022
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Research Grant
Quantum-enhanced Interferometry for New Physics - Extension
新物理学的量子增强干涉测量 - 扩展
  • 批准号:
    ST/W006308/1
  • 财政年份:
    2022
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Research Grant
Extension to the 'Quantum-enhanced Interferometry for New Physics' programme
“新物理量子增强干涉测量”计划的扩展
  • 批准号:
    ST/W00643X/1
  • 财政年份:
    2022
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Research Grant
Quantum-enhanced Interferometry for New Physics: QI-extension proposal
新物理学的量子增强干涉测量:QI 扩展提案
  • 批准号:
    ST/W006375/1
  • 财政年份:
    2022
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Research Grant
Quantum enhanced interferometry for new physics
新物理学的量子增强干涉测量
  • 批准号:
    2569982
  • 财政年份:
    2021
  • 资助金额:
    $ 209.19万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了