Extension to the 'Quantum-enhanced Interferometry for New Physics' programme

“新物理量子增强干涉测量”计划的扩展

基本信息

  • 批准号:
    ST/W00643X/1
  • 负责人:
  • 金额:
    $ 2.04万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2022
  • 资助国家:
    英国
  • 起止时间:
    2022 至 无数据
  • 项目状态:
    未结题

项目摘要

Modern physics explains a stunning variety of phenomena from the smallest of scales to the largest and has already revolutionized the world! Lasers, semiconductors, and transistors are at the core of our laptops, mobile phones, and medical equipment. These technologies in turn have enabled us to explore the natural world with ever greater detail, precision, and rigour.Over the last few years, novel quantum technologies are being developed within the National Quantum Technology Programme in the UK and throughout the world that could impact our everyday lives and enable fundamental physics research that leads to new discoveries. Quantum states of light have recently improved the sensitivity of gravitational-wave detectors, whose detections to date have enthralled the public, and superconducting transition-edge-sensors are now used in telescopes that capture high-resolution images of the universe.Despite these successes of modern physics, several profound and challenging questions remain open. Our consortium QI-extension will build on recent advances in quantum technologies, both within our existing consortium QI and beyond, to address two of the most pressing questions: (i) What is the nature of dark matter, and (ii) How can quantum mechanics be united with Einstein's theory of relativity?The first research direction is motivated by numerous observations which suggest that a significant fraction of the matter in galaxies is not directly observed by optical telescopes. Understanding the nature of this mysterious so-called dark matter will shed light on the history of the universe and will trigger new areas of research in fundamental and possibly applied physics. A number of state-of-the-art experiments world-wide are looking for dark matter candidates with no luck so far. The candidates we propose to search for are axions and axion-like-particles (ALPs). These particles are motivated by outstanding questions in particle physics and may account for a significant part, or all of dark matter. First, we will enhance the sensitivity of our current experiment that will detect a dark matter signal or improve the existing limits on the axion-photon coupling by a few orders of magnitude for a large range of axion masses. Second, we will build and characterise a large (8''/200 nm diameter) superconducting nanowire single photon detector to extend dark matter searches.Our second line of research is devoted to the nature of space and time. We have a long list of successful experimental tests of quantum mechanics and Einstein's theory of relativity. But should gravity be united with quantum mechanics? If so, how? As with any open question in physics, experiments can direct us towards the answers.To that end, we propose to study two quantum aspects of space-time. Firstly, we will experimentally investigate the holographic principle, which states that the information content of a volume can be encoded on its boundary. We will exploit quantum states of light and build two ultra-sensitive laser interferometers that will investigate possible correlations between different regions of space with unprecedented sensitivity. We will also use the data to search for scalar dark matter in the galactic halo.Secondly, we will search for signatures of semiclassical gravity models that approximately solve the quantum gravity problems. Building on our existing work on experimentally testing semiclassical models of gravity, we will seek to design table-top experiments that may provide direct signatures of the quantum nature of gravity.Answering these challenging questions of fundamental physics with the aid of modern quantum technologies has the potential to open new horizons for physics research and to reach a new level of understanding of the world we live in. The proposed research directions share the common technological platform of quantum-enhanced interferometry and benefit from the diverse skills of the researchers involved.
现代物理学解释了从最小尺度到最大尺度的各种令人惊叹的现象,并且已经彻底改变了世界!激光器、半导体和晶体管是我们笔记本电脑、移动电话和医疗设备的核心。这些技术反过来又使我们能够更详细、更精确、更严谨地探索自然世界。在过去的几年里,英国和世界各地的国家量子技术计划正在开发新颖的量子技术,这可能会影响我们的日常生活,并促进基础物理研究,从而带来新的发现。光的量子态最近提高了引力波探测器的灵敏度,迄今为止,引力波探测器的探测已经引起了公众的关注,超导跃迁边缘传感器现在被用于捕捉宇宙高分辨率图像的望远镜中。现代物理学中,一些深刻且具有挑战性的问题仍然悬而未决。我们的联盟 QI 扩展将建立在量子技术的最新进展的基础上,无论是在我们现有的联盟 QI 内还是其他领域,都将解决两个最紧迫的问题:(i) 暗物质的本质是什么,以及 (ii) 量子如何能力学与爱因斯坦的相对论相结合吗?第一个研究方向是由大量的观察所激发的,这些观察表明星系中的物质的很大一部分不能被光学望远镜直接观察到。了解这种神秘的所谓暗物质的本质将揭示宇宙的历史,并将引发基础物理学和可能的应用物理学的新研究领域。世界各地的许多最先进的实验都在寻找暗物质候选者,但到目前为止还没有成功。我们建议寻找的候选者是轴子和类轴子粒子(ALP)。这些粒子是由粒子物理学中的突出问题所激发的,并且可能占暗物质的重要部分或全部。首先,我们将提高当前实验的灵敏度,该实验将检测暗物质信号或将轴子-光子耦合的现有限制提高几个数量级,以适应大范围的轴子质量。其次,我们将建造并表征大型(8 英寸/200 nm 直径)超导纳米线单光子探测器,以扩展暗物质搜索。我们的第二个研究方向致力于空间和时间的本质。我们有一长串关于量子力学和爱因斯坦相对论的成功实验测试。但引力应该与量子力学结合起来吗?如果是这样,怎么办?与物理学中任何开放性问题一样,实验可以引导我们找到答案。为此,我们建议研究时空的两个量子方面。首先,我们将通过实验研究全息原理,该原理指出体积的信息内容可以在其边界上进行编码。我们将利用光的量子态并建造两个超灵敏激光干涉仪,以前所未有的灵敏度研究空间不同区域之间可能的相关性。我们还将利用这些数据来寻找银河晕中的标量暗物质。其次,我们将寻找近似解决量子引力问题的半经典引力模型的特征。在我们现有的半经典引力模型实验工作的基础上,我们将寻求设计可以提供引力量子性质的直接特征的桌面实验。借助现代量子技术来回答这些具有挑战性的基础物理问题具有以下意义:潜力为物理研究开辟新视野,并使我们对我们生活的世界的理解达到新的水平。拟议的研究方向共享量子增强干涉测量的通用技术平台,并受益于所涉及研究人员的多样化技能。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stuart Reid其他文献

The genetic basis of resistance to Ostertagia circumcincta in lambs.
羔羊抗 Ostertagia circcincta 的遗传基础。
  • DOI:
    10.1016/s1090-0233(97)80049-4
  • 发表时间:
    1997
  • 期刊:
  • 影响因子:
    2.2
  • 作者:
    M. Stear;K. Bairden;S. Bishop;J. Buitkamp;J. Duncan;G. Gettinby;Q. McKellar;M. Park;J. Parkins;Stuart Reid;S. Strain;M. Murray
  • 通讯作者:
    M. Murray
Epidemiological, clinical, haematological and biochemical characteristics of canine hypothyroidism
犬甲状腺功能减退症的流行病学、临床、血液学和生化特征
  • DOI:
  • 发表时间:
    1999
  • 期刊:
  • 影响因子:
    0
  • 作者:
    R. M. Dixon;Stuart Reid;Carmel T. Mooney
  • 通讯作者:
    Carmel T. Mooney
Intrusive imagery and goals: a control theory perspective
侵入性意象和目标:控制理论的视角
Optical and Electrical Properties of Diamond-like-Carbon Coatings Prepared by Electron Cyclotron Resonance Ion Beam Deposition Process
电子回旋共振离子束沉积工艺制备类金刚石碳涂层的光学和电学性能
  • DOI:
  • 发表时间:
    2024
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Callum Wiseman;M. B. Yaala;Chalisa Gier;Laurent Marot;Christopher McCormick;Caspar Clark;Sheila Rowan;Stuart Reid
  • 通讯作者:
    Stuart Reid
Associations between the Presence of Virulence Determinants and the Epidemiology and Ecology of Zoonotic Escherichia coli
人畜共患病大肠杆菌毒力决定因素的存在与流行病学和生态学之间的关联
  • DOI:
  • 发表时间:
    2010
  • 期刊:
  • 影响因子:
    4.4
  • 作者:
    Kathleen M O'Reilly;J. C. Low;M. Denwood;D. Gally;J. Evans;G. J. Gunn;D. J. Mellor;Stuart Reid;L. Matthews
  • 通讯作者:
    L. Matthews

Stuart Reid的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stuart Reid', 18)}}的其他基金

Establishing the design and development of novel crystalline-amorphous hybrid optical coatings for precision measurements and frequency standards
建立用于精密测量和频率标准的新型晶体-非晶混合光学涂层的设计和开发
  • 批准号:
    ST/X004856/1
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Optical coating optimisation to enable the transfer of technologies from gravitational wave detection to quantum and intense light-matter experiments
光学涂层优化,实现从引力波探测到量子和强光物质实验的技术转移
  • 批准号:
    ST/W005778/1
  • 财政年份:
    2022
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Investigations in gravitational radiation
引力辐射研究
  • 批准号:
    ST/V005642/1
  • 财政年份:
    2021
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Quantum-enhanced Interferometry for New Physics
新物理学的量子增强干涉测量
  • 批准号:
    ST/T006668/1
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Investigations in gravitational radiation
引力辐射研究
  • 批准号:
    ST/V001728/1
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Equipment in support of: Exploiting extreme performance optical coatings developed within the UK gravitational wave community
支持的设备: 利用英国引力波界开发的极端性能光学涂层
  • 批准号:
    ST/T003367/1
  • 财政年份:
    2020
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Exploiting extreme performance optical coatings developed within the UK gravitational wave community
利用英国引力波界开发的极端性能光学涂层
  • 批准号:
    ST/S001832/1
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
The A+ upgrade: Expanding the Advanced LIGO Horizon
A 级升级:扩展先进的 LIGO 视野
  • 批准号:
    ST/S002472/1
  • 财政年份:
    2019
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Early diagnosis and intervention of osteoporosis using nanovibrational stimulation
利用纳米振动刺激进行骨质疏松症的早期诊断和干预
  • 批准号:
    ST/S000968/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
Equipment for advanced optical coatings and materials research, characterisation and development for gravitational wave detectors and beyond
用于引力波探测器等的先进光学涂层和材料研究、表征和开发的设备
  • 批准号:
    ST/S002359/1
  • 财政年份:
    2018
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant

相似国自然基金

基于压缩态光场的量子增强型激光吸收光谱测量研究
  • 批准号:
    12304403
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
量子增强型原子磁力计研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
局域表面等离激元增强型太赫兹量子阱探测器研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
增强型GaSb/Si/InAs异质结量子器件输运及其内电场下拓扑绝缘态的研究
  • 批准号:
    61704036
  • 批准年份:
    2017
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目
基于量子态工程调控的LSP增强型日盲紫外光电探测器及机理研究
  • 批准号:
    61604124
  • 批准年份:
    2016
  • 资助金额:
    22.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Enhanced Quantum Dot Sources and Optical Atomic Memories for Telecommunication InterConnectivity
用于电信互连的增强型量子点源和光学原子存储器
  • 批准号:
    EP/Z000548/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
RII Track-4:NSF: In-vitro Cytotoxicity Assessment of Synthesized Quantum Dots for Enhanced Cell Imaging
RII Track-4:NSF:用于增强细胞成像的合成量子点的体外细胞毒性评估
  • 批准号:
    2327429
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
Memory-Enhanced Entanglement Distribution with Gallium ARsenide quantum Dots
砷化镓量子点的记忆增强纠缠分布
  • 批准号:
    EP/Z000556/1
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Research Grant
NSF Convergence Accelerator Track L: Portable Quantum-enhanced Sensing and Species Identification of Bioaerosols
NSF 融合加速器轨道 L:生物气溶胶的便携式量子增强传感和物种识别
  • 批准号:
    2344350
  • 财政年份:
    2024
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
QuSeC-TAQS: Sensing-Intelligence on The Move: Quantum-Enhanced Optical Diagnosis of Crop Diseases
QuSeC-TAQS:移动中的传感智能:农作物病害的量子增强光学诊断
  • 批准号:
    2326746
  • 财政年份:
    2023
  • 资助金额:
    $ 2.04万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了