Ultra-Low-Noise Photometric, Spectroscopic and Interferometric Imaging Technology for Astrophysics

天体物理学超低噪声光度、光谱和干涉成像技术

基本信息

  • 批准号:
    ST/J001554/1
  • 负责人:
  • 金额:
    $ 82.84万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2012
  • 资助国家:
    英国
  • 起止时间:
    2012 至 无数据
  • 项目状态:
    已结题

项目摘要

The submillimetre-wave (3mm-300um) and far-infrared (300um-20um) regions of the electromagnetic spectrum are of considerable importance for astronomy because they contain a wealth of information about the cool, optically dark Universe. For example, the Cosmic Microwave Background radiation, which is a relic of the Big Bang, can be found at the longest wavelengths, whereas thermal radiation from distant, highly redshifted galaxies can be found at the shortest wavelengths. This part of the spectrum also contains thousands of spectral lines from numerous molecular and atomic species, which are important for studying the chemistry of regions where stars are being formed. It is exceptionally difficult, however, to make observations at submillimetre-wave and far-infrared and wavelengths because it is not possible to buy sufficiently sensitive cameras off of the shelf. Instead astronomers must develop their own imaging technology. These detectors must be highly sensitive, and must be cooled to temperatures of below 500mK. In addition, the instruments must be rugged, and capable of being flown in space. The proposed work aims to develop a new generation of extremely sensitive detectors and cameras by fabricating microcircuits out of materials called superconductors. Superconductors have the property that their electrical resistance falls to zero below some critical temperature, and magnetic flux is expelled. Indeed, the superconducting state is a special state of matter, and has many curious properties. By fabricating microcircuits out of the superconductors Nb, Ta, Al, and Mo, and by using modern Si micromachining techniques, it is possible to make detectors having exceptional properties. For example, our most recent infrared detectors are capable of detecting a light bulb being turned on and off for just 1 second at a distance of 10 million miles. The work will concentrate on understanding how to develop large-format cameras having thousands, and in some cases millions, of pixels. Four devices are of specific interest: (i) a device called a Transition Edge Sensor (TES), which operates by using the sharp transition of a superconductor to measure the minute change in temperature that occurs when infrared power is absorber by a tiny free-standing micro-machined silicon nitride island; (ii) a device called a Cold Electron Bolometer, which uses a solid-state refrigeration to achieve ultra-low-noise power detection; (iii) a device called a Kinetic Inductance Detector (KID), which essentially measures a small change that occurs in the amount by which a magnetic field penetrates into the surface of a superconductor when power is absorbed; and (iv) a device called a Superconductor Insulator Superconductor (SIS) mixer, which uses extremely thin layers of superconducting and insulating material to create diodes, which can be used to construct highly sensitive radio receivers. Each of these device types can be packed into arrays to form imaging systems of various kinds. Indeed, the wonderful scientific discoveries that were achieved in astronomy, in recent years, were only made possible by our ability to detect very weak signals coming from large radiotelescopes by using these tiny sub-micron devices. At the end of the program, we will have demonstrated a new generation of imaging technology based on superconducting devices, which will be available to construct the highly sensitive submillimetre-wave and far-infrared cameras that are needed for the next generation of ground-based and space-borne astronomy.
电磁波谱的亚毫米波(3mm-300um)和远红外(300um-20um)区域对于天文学具有相当重要的意义,因为它们包含有关冷、光学暗宇宙的大量信息。例如,宇宙微波背景辐射是大爆炸的遗迹,可以在最长的波长下发现,而来自遥远、高度红移星系的热辐射可以在最短的波长下发现。这部分光谱还包含来自众多分子和原子物种的数千条谱线,这对于研究恒星形成区域的化学非常重要。然而,在亚毫米波和远红外波长下进行观测是异常困难的,因为不可能购买现成的足够灵敏的相机。相反,天文学家必须开发自己的成像技术。这些探测器必须高度灵敏,并且必须冷却至 500mK 以下的温度。此外,仪器必须坚固耐用,并且能够在太空中飞行。拟议的工作旨在通过用超导体材料制造微电路来开发新一代极其灵敏的探测器和相机。超导体具有以下特性:在某个临界温度以下,其电阻降至零,并且磁通量被排出。事实上,超导态是一种特殊的物质状态,并且具有许多奇怪的特性。通过用超导体 Nb、Ta、Al 和 Mo 制造微电路,并使用现代硅微加工技术,可以制造具有特殊性能的探测器。例如,我们最新的红外探测器能够在 1000 万英里的距离内检测到灯泡打开和关闭时间仅为 1 秒。这项工作将集中于了解如何开发具有数千甚至数百万像素的大画幅相机。有四种设备特别令人感兴趣:(i) 一种称为过渡边缘传感器 (TES) 的设备,它通过使用超导体的急剧转变来测量当红外功率被微小自由吸收器吸收时发生的微小温度变化。立式微加工氮化硅岛; (ii) 一种称为冷电子辐射热计的装置,它利用固态制冷来实现超低噪声功率检测; (iii) 一种称为动感电感检测器 (KID) 的设备,其本质上是测量吸收功率时磁场渗透到超导体表面的量发生的微小变化; (iv) 一种称为超导绝缘体超导 (SIS) 混频器的设备,它使用极薄的超导和绝缘材料层来创建二极管,可用于构建高灵敏度的无线电接收器。这些设备类型中的每一种都可以装入阵列中以形成各种类型的成像系统。事实上,近年来天文学中取得的奇妙科学发现,只有通过我们使用这些微小的亚微米设备检测大型射电望远镜发出的非常微弱的信号的能力才成为可能。在项目结束时,我们将展示基于超导器件的新一代成像技术,该技术将可用于构建下一代地面所需的高灵敏度亚毫米波和远红外相机和星载天文学。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Towards Ultra-Low-Noise MoAu Transition Edge Sensors
迈向超低噪声 MoAu 过渡边缘传感器
Preliminary Measurement Results of a 650 GHz Planar Circuit Balanced SIS Mixer
650 GHz 平面电路平衡 SIS 混频器的初步测量结果
Exploring the performance of thin-film superconducting multilayers as kinetic inductance detectors for low-frequency detection
探索薄膜超导多层膜作为低频检测动感电感探测器的性能
The non-equilibrium response of a superconductor to pair-breaking radiation measured over a broad frequency band
在宽频带上测量的超导体对断对辐射的非平衡响应
  • DOI:
    http://dx.10.1063/1.4923097
  • 发表时间:
    2015
  • 期刊:
  • 影响因子:
    4
  • 作者:
    De Visser P
  • 通讯作者:
    De Visser P
Comparison of the Effects of Magnetic Field on Low Noise MoAu and TiAu TES Bolometers
磁场对低噪声 MoAu 和 TiAu TES 测辐射热计的影响比较
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stafford Withington其他文献

Superconducting Microwave Detector Technology for Ultra-Light Dark Matter Haloscopes and other Fundamental Physics Experiments: Device Physics (Part II)
用于超光暗物质光环镜和其他基础物理实验的超导微波探测器技术:器件物理(第二部分)
Investigation of microwave propagation in high-temperature superconducting waveguides
高温超导波导中微波传播的研究
  • DOI:
    10.1109/7260.959313
  • 发表时间:
    2001-05-27
  • 期刊:
  • 影响因子:
    3
  • 作者:
    G. Yassin;Grzegorz Jung;V. Dikovsky;I. Barboy;Makoto Kambara;D. Cardwell;Stafford Withington
  • 通讯作者:
    Stafford Withington

Stafford Withington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stafford Withington', 18)}}的其他基金

Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006307/2
  • 财政年份:
    2022
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Ultra-low-noise Superconducting Spectrometer Technology for Astrophysics
天体物理学超低噪声超导光谱仪技术
  • 批准号:
    ST/V000837/2
  • 财政年份:
    2022
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Quantum Sensors for the Hidden Sector
隐藏领域的量子传感器
  • 批准号:
    ST/T006625/2
  • 财政年份:
    2022
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006307/1
  • 财政年份:
    2021
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Quantum Sensors for the Hidden Sector
隐藏领域的量子传感器
  • 批准号:
    ST/T006625/1
  • 财政年份:
    2021
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Ultra-low-noise Superconducting Spectrometer Technology for Astrophysics
天体物理学超低噪声超导光谱仪技术
  • 批准号:
    ST/V000837/1
  • 财政年份:
    2021
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Photometric and Spectroscopic Superconducting Imaging Technology for Astrophysics
天体物理学光度和光谱超导成像技术
  • 批准号:
    ST/R00062X/1
  • 财政年份:
    2018
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Photometric and Spectroscopic Superconducting Imaging Technology for Astrophysics
天体物理学光度和光谱超导成像技术
  • 批准号:
    ST/M000818/1
  • 财政年份:
    2015
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
CAMELS - The Cambridge Emission Line Surveyor for the Greenland Telescope
CAMELS - 格陵兰望远镜的剑桥发射线测量员
  • 批准号:
    ST/L002221/1
  • 财政年份:
    2014
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Additional techncal support for Ultra-Low0Noise Photometric, Spectroscopic and Interferometric Imaging Technology for Astrophysics.
对天体物理学超低噪声光度、光谱和干涉成像技术的额外技术支持。
  • 批准号:
    ST/K001833/1
  • 财政年份:
    2012
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant

相似国自然基金

面向低轨卫星通信的预变换极化编码传输机制研究
  • 批准号:
    62301185
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
低共熔溶剂与水二元体系从超浓电解液到稀水溶液转变过程中的界面结构及反应动力学研究
  • 批准号:
    22372140
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
低强度超声激励功能化纳米砷烯抗三阴性乳腺癌的药理学机制及可视化研究
  • 批准号:
    82304544
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于酸-碱共混策略制备兼具高固化效率与低熔点的耐高温芳腈基树脂的研究
  • 批准号:
    22375134
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
“温度响应-印迹驱动”聚低共熔溶剂纸芯片对中药黄曲霉毒素的可视化检测研究
  • 批准号:
    82304719
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Ultra-low noise magnetic environments
超低噪声磁场环境
  • 批准号:
    ST/Y509978/1
  • 财政年份:
    2024
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Research Grant
Ultra Low Phase Noise Analysis & Measurement
超低相位噪声分析
  • 批准号:
    10089379
  • 财政年份:
    2024
  • 资助金额:
    $ 82.84万
  • 项目类别:
    Collaborative R&D
Ultra-low distortion and noise electronics to enable a clinical MPI imaging platform
超低失真和噪声电子器件支持临床 MPI 成像平台
  • 批准号:
    10761613
  • 财政年份:
    2023
  • 资助金额:
    $ 82.84万
  • 项目类别:
Acquisition-independent machine learning for morphometric analysis of underrepresented aging populations with clinical and low-field brain MRI
独立于采集的机器学习,通过临床和低场脑 MRI 对代表性不足的老龄化人群进行形态计量分析
  • 批准号:
    10739049
  • 财政年份:
    2023
  • 资助金额:
    $ 82.84万
  • 项目类别:
Ultra-Low Count Quantitative SPECT for Alpha-Particle Therapies
用于 α 粒子治疗的超低计数定量 SPECT
  • 批准号:
    10446871
  • 财政年份:
    2022
  • 资助金额:
    $ 82.84万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了