Photometric and Spectroscopic Superconducting Imaging Technology for Astrophysics

天体物理学光度和光谱超导成像技术

基本信息

  • 批准号:
    ST/R00062X/1
  • 负责人:
  • 金额:
    $ 132.92万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2018
  • 资助国家:
    英国
  • 起止时间:
    2018 至 无数据
  • 项目状态:
    已结题

项目摘要

The microwave (3 cm-3 mm), submillimetre-wave (3 mm-300 um) and far-infrared (300 um-20 um) regions of the electromagnetic spectrum contain a wealth of information about the cool, dark Universe. For example, the Cosmic Microwave Background radiation can be found at the longest wavelengths, and thermal radiation from distant, highly redshifted galaxies can be found at the shortest wavelengths. This part of the spectrum also contains thousands of spectral lines from numerous molecular and atomic species, which are important for studying the chemistry and physics of regions where stars and planets are formed. It is exceptionally difficult to carry out astronomy at submillimetre wavelengths because observations must be made from high dry sites or from space. The detection of signals requires large, precision telescopes, and complex instruments must be cooled to temperatures of between 4 K and 100 mK. It is simply not possible to buy suitable cameras and spectrometers, and so astronomers must develop their own imaging technology. The proposed programme aims to develop a new generation of extremely sensitive detectors and receivers for microwave, submillimetre-wave and far-infrared wavelengths by fabricating microcircuits out of materials called superconductors. The superconducting state is a distinct state of matter, which has many curious properties. By fabricating microcircuits from Nb, Ta, Al, Mo, NbN, TiN and NbTiN and by using modern Si and SiN micromachining techniques, it is possible to make complex electronic devices having extraordinary characteristics. For example, some of our infrared detectors are capable of sensing a light bulb being turned on and off for just 1 second at a distance of 10 million miles, whilst others operate in a truly quantum mechanical way, displaying non-classical conversion gain and sensitivities limited by the Heisenberg uncertainty principle. The work described in this proposal concentrates on four specific devices: (i) Transition Edge Sensors (TESs), which operate by using the sharp transition of a superconductor, to its normal state, to measure the minute change in temperature that occurs when infrared power is absorbed by a tiny free-standing micro-machined SiN membrane; (ii) Kinetic Inductance Detectors (KIDs), which essentially measure a small change that occurs in the amount by which magnetic field penetrates into the surface of a superconductor when photons are absorbed; (iii) parametric amplifiers, which use the non-linear characteristics of certain superconducting materials to achieve ultra-low-noise amplification; (iv) Superconductor Insulator Superconductor (SIS) mixers, which use extremely thin layers of superconducting and insulating material to create diodes in which quantum mechanical tunnelling occurs, creating highly sensitive radio receivers. Each of these devices can be used singly or packed into arrays of multiple pixels to form cameras. Superconducting mixers require reference sources called local oscillators, which are extremely difficult to realise at THz frequencies. The development of suitable coherent source technology is therefore an essential part of our programme. Another innovative part of our proposed work is to develop microscopically patterned phononic filters that control the flow of heat onto devices, and reduce thermal fluctuation noise, by forming filters that attenuate elastic waves in support structures. The core themes of our proposed research into quantum sensor physics are intrinsically intellectually fruitful, and are of central importance to enabling major areas of astronomy. At the end of the work, we will have demonstrated various new imaging technologies based on advanced superconducting devices, and this technology will then be available to construct the highly sensitive instruments needed for the next generation of ground-based and space-based astronomy.
电磁波谱的微波(3 cm-3 mm)、亚毫米波(3 mm-300 um)和远红外(300 um-20 um)区域包含有关冷暗宇宙的丰富信息。例如,宇宙微波背景辐射可以在最长的波长处找到,而来自遥远、高度红移星系的热辐射可以在最短的波长处找到。这部分光谱还包含来自众多分子和原子物种的数千条谱线,这对于研究恒星和行星形成区域的化学和物理非常重要。在亚毫米波长下进行天文学异常困难,因为观测必须在高干燥地点或太空进行。信号探测需要大型精密望远镜,复杂的仪器必须冷却至 4 K 至 100 mK 的温度。根本不可能购买合适的相机和光谱仪,因此天文学家必须开发自己的成像技术。该计划旨在通过用超导体材料制造微电路来开发新一代微波、亚毫米波和远红外波长的极其灵敏的探测器和接收器。超导态是一种独特的物质状态,具有许多奇怪的特性。通过用 Nb、Ta、Al、Mo、NbN、TiN 和 NbTiN 制造微电路并使用现代 Si 和 SiN 微加工技术,可以制造具有非凡特性的复杂电子器件。例如,我们的一些红外探测器能够在 1000 万英里的距离上感应到灯泡打开和关闭仅 1 秒,而其他探测器则以真正的量子力学方式运行,显示非经典转换增益和灵敏度受海森堡测不准原理的限制。该提案中描述的工作集中在四个特定设备上:(i)过渡边缘传感器(TES),它通过使用超导体到其正常状态的急剧转变来工作,以测量红外功率时发生的温度的微小变化。被微小的独立式微加工 SiN 膜吸收; (ii) 动感电感探测器(KID),其本质上是测量光子被吸收时磁场渗透到超导体表面的量发生的微小变化; (iii)参量放大器,利用某些超导材料的非线性特性来实现超低噪声放大; (iv) 超导绝缘体超导(SIS)混频器,它使用极薄的超导和绝缘材料层来创建二极管,在二极管中发生量子力学隧道效应,从而创建高灵敏度的无线电接收器。这些设备中的每一个都可以单独使用或打包成多个像素阵列以形成相机。超导混频器需要称为本地振荡器的参考源,这在太赫兹频率下极难实现。因此,开发合适的相干源技术是我们计划的重要组成部分。我们提出的工作的另一个创新部分是开发微观图案的声子滤波器,通过形成衰减支撑结构中的弹性波的滤波器来控制热量流到设备上,并减少热波动噪声。我们提出的量子传感器物理研究的核心主题本质上是富有成果的,对于实现天文学的主要领域至关重要。工作结束时,我们将展示基于先进超导器件的各种新型成像技术,然后该技术将可用于构建下一代地基和空基天文学所需的高灵敏度仪器。

项目成果

期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Comparing the performance of 850 GHz integrated bias-tee superconductor-insulator-superconductor (SIS) mixers with single- and parallel-junction tuner
比较 850 GHz 集成偏置 T 形超导体-绝缘体-超导体 (SIS) 混频器与单结和并联调谐器的性能
Suppressed-gap millimetre wave kinetic inductance detectors using DC-bias current
使用直流偏置电流的抑制间隙毫米波动感电感探测器
  • DOI:
    http://dx.10.17863/cam.81496
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao S
  • 通讯作者:
    Zhao S
Modal characterization of thermal emitters using the Method of Moments
使用矩量法对热发射器进行模态表征
  • DOI:
    http://dx.10.23919/eucap48036.2020.9135274
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Tihon D
  • 通讯作者:
    Tihon D
Suppressed-gap millimetre wave kinetic inductance detectors using DC-bias current
使用直流偏置电流的抑制间隙毫米波动感电感探测器
  • DOI:
    http://dx.10.1088/1361-6463/ab8d6d
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao S
  • 通讯作者:
    Zhao S
Loss and saturation in superconducting travelling-wave parametric amplifiers
超导行波参量放大器的损耗和饱和
  • DOI:
    http://dx.10.1088/1361-6463/ab3236
  • 发表时间:
    2019
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Zhao S
  • 通讯作者:
    Zhao S
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Stafford Withington其他文献

Investigation of microwave propagation in high-temperature superconducting waveguides
高温超导波导中微波传播的研究
  • DOI:
    10.1109/7260.959313
  • 发表时间:
    2001-05-27
  • 期刊:
  • 影响因子:
    3
  • 作者:
    G. Yassin;Grzegorz Jung;V. Dikovsky;I. Barboy;Makoto Kambara;D. Cardwell;Stafford Withington
  • 通讯作者:
    Stafford Withington
Superconducting Microwave Detector Technology for Ultra-Light Dark Matter Haloscopes and other Fundamental Physics Experiments: Device Physics (Part II)
用于超光暗物质光环镜和其他基础物理实验的超导微波探测器技术:器件物理(第二部分)

Stafford Withington的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Stafford Withington', 18)}}的其他基金

Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006307/2
  • 财政年份:
    2022
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Ultra-low-noise Superconducting Spectrometer Technology for Astrophysics
天体物理学超低噪声超导光谱仪技术
  • 批准号:
    ST/V000837/2
  • 财政年份:
    2022
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Quantum Sensors for the Hidden Sector
隐藏领域的量子传感器
  • 批准号:
    ST/T006625/2
  • 财政年份:
    2022
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Determination of Absolute Neutrino Mass Using Quantum Technologies
使用量子技术测定中微子绝对质量
  • 批准号:
    ST/T006307/1
  • 财政年份:
    2021
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Quantum Sensors for the Hidden Sector
隐藏领域的量子传感器
  • 批准号:
    ST/T006625/1
  • 财政年份:
    2021
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Ultra-low-noise Superconducting Spectrometer Technology for Astrophysics
天体物理学超低噪声超导光谱仪技术
  • 批准号:
    ST/V000837/1
  • 财政年份:
    2021
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Photometric and Spectroscopic Superconducting Imaging Technology for Astrophysics
天体物理学光度和光谱超导成像技术
  • 批准号:
    ST/M000818/1
  • 财政年份:
    2015
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
CAMELS - The Cambridge Emission Line Surveyor for the Greenland Telescope
CAMELS - 格陵兰望远镜的剑桥发射线测量员
  • 批准号:
    ST/L002221/1
  • 财政年份:
    2014
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Additional techncal support for Ultra-Low0Noise Photometric, Spectroscopic and Interferometric Imaging Technology for Astrophysics.
对天体物理学超低噪声光度、光谱和干涉成像技术的额外技术支持。
  • 批准号:
    ST/K001833/1
  • 财政年份:
    2012
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Ultra-Low-Noise Photometric, Spectroscopic and Interferometric Imaging Technology for Astrophysics
天体物理学超低噪声光度、光谱和干涉成像技术
  • 批准号:
    ST/J001554/1
  • 财政年份:
    2012
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant

相似国自然基金

基于宽波段光谱探测的镍基超导电子结构及其界面效应研究
  • 批准号:
    12374378
  • 批准年份:
    2023
  • 资助金额:
    52 万元
  • 项目类别:
    面上项目
高压下富氢化合物超导转变的瞬态光谱行为研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    55 万元
  • 项目类别:
    面上项目
镍基无限层超导薄膜超快光谱学的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
铁基超导体系和拓扑量子材料的红外光谱研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    120 万元
  • 项目类别:
    优秀青年科学基金项目
超导纳米线本征光谱响应特性及多光谱器件研究
  • 批准号:
    61971408
  • 批准年份:
    2019
  • 资助金额:
    59 万元
  • 项目类别:
    面上项目

相似海外基金

Development of a superconducting spectroscopic single-photon detector for spectroscopic measurement of single photons
开发用于单光子光谱测量的超导光谱单光子探测器
  • 批准号:
    19K15472
  • 财政年份:
    2019
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Photometric and Spectroscopic Superconducting Imaging Technology for Astrophysics
天体物理学光度和光谱超导成像技术
  • 批准号:
    ST/R000662/1
  • 财政年份:
    2018
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Photometric and Spectroscopic Superconducting Imaging Technology for Astrophysics
天体物理学光度和光谱超导成像技术
  • 批准号:
    ST/M001113/1
  • 财政年份:
    2015
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Photometric and Spectroscopic Superconducting Imaging Technology for Astrophysics
天体物理学光度和光谱超导成像技术
  • 批准号:
    ST/M000818/1
  • 财政年份:
    2015
  • 资助金额:
    $ 132.92万
  • 项目类别:
    Research Grant
Prostate Cancer In Vivo Using an Ultra Low Field MRI Device
使用超低场 MRI 设备观察体内前列腺癌
  • 批准号:
    7912003
  • 财政年份:
    2010
  • 资助金额:
    $ 132.92万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了