Fundamental Implications of Fields, Strings and Gravity

场、弦和引力的基本含义

基本信息

  • 批准号:
    ST/L000490/1
  • 负责人:
  • 金额:
    $ 34.55万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2014
  • 资助国家:
    英国
  • 起止时间:
    2014 至 无数据
  • 项目状态:
    已结题

项目摘要

Newtonian physics describes our universe well, provided the objects of interest are not too small, do not move too fast, or are not too dense. At a small length scales, Newtonian physics is replaced by quantum physics. In addition, if interactions involve speeds close to that of light, then quantum physics is replaced by quantum field theory (QFT). This theory is a milestone of scientific discovery and underpins all experimentally verified particles and interactions. The standard approach to QFT relies on perturbation theory, which assumes that all interactions are weak. There are many situations where that is not the case, and the resulting theory is said to be strongly coupled. In the theory underlying the standard model of particle physics the interactions are generally not weak. This prevents us from explaining phenomena such as the confinement of quarks to form the protons and neutrons that make up matter. This is a conceptual problem, and a major limitation for phenomenological applications.What about if we are dealing with extremely dense objects? For example, if all of the matter inside the Earth were compressed to fill a sphere with a radius of a few millimetres, then the above theories would break down. In this case, one would need to incorporate Einstein's theory of general relativity with quantum field theory. However, there is no completely consistent way to do this, leaving a gaping hole in our understanding of the universe. The only theory that successfully combines QFT with general relativity is string theory. Self-consistency of the theory demands stringent mathematical conditions be imposed. For example, there must exist six extra spatial dimensions in addition to the three spatial dimensions we are accustomed to. To resolve this, one must ``compactify'', i.e. posit that the extra dimensions span curled geometries, not visible to present day experiment. A rough analogy is with a hose: from a distance it looks one-dimensional, but on closer inspection there is an additional circular direction. Describing the physics of the observable universe becomes a problem closely tied to the geometry of certain spaces.Remarkably, string theory has led to new ideas concerning the description of strongly coupled QFTs. One such tool, known as holography, represents the idea that our space-time encodes information of a higher dimensional one, much like a hologram is a two-dimensional representation of a three-dimensional picture. It turns out that the strongly coupled QFT in four-dimensions relates to a weakly coupled five-dimensional gravity theory in which we may apply perturbative techniques to perform computations. Over the past decade, this idea has led to many new and exciting developments in theoretical physics. It has also been used to understand experimental results obtained under extreme pressure and temperature conditions (quark gluon plasma). The aims of this project are two-fold: to use these new tools from string theory to understand the strongly coupled regime of QFT; and to use string theory to model the four-dimensional space time observed today. For example, many of the ideas and concepts within string theory have drastically changed the way we think about strongly coupled QFTs. There are also new examples of strongly coupled QFTs, in which calculations have become tractable. Although not realistic models, they share with the real world many common qualitative features, which are otherwise hard to understand. By studying these new examples we hope to shed light on how obscure mechanisms such as confinement work in theories of experimental interest. By utilising these developments in quantum field theory we hope to undercover the exact conditions required to reproduce the string compactification that describes modern particle physics.
牛顿物理学很好地描述了我们的宇宙,只要感兴趣的物体不太小、移动不太快或密度不太大。在小长度尺度上,牛顿物理学被量子物理学取代。此外,如果相互作用涉及接近光速的速度,那么量子物理学就会被量子场论(QFT)取代。该理论是科学发现的里程碑,是所有经过实验验证的粒子和相互作用的基础。 QFT 的标准方法依赖于微扰理论,该理论假设所有相互作用都很弱。在很多情况下情况并非如此,由此产生的理论被认为是强耦合的。在粒子物理标准模型的理论中,相互作用通常不弱。这使我们无法解释诸如限制夸克以形成构成物质的质子和中子等现象。这是一个概念问题,也是现象学应用的一个主要限制。如果我们处理的是极其密集的物体怎么办?例如,如果地球内部的所有物质都被压缩以填充一个半径为几毫米的球体,那么上述理论就会崩溃。在这种情况下,人们需要将爱因斯坦的广义相对论与量子场论结合起来。然而,没有完全一致的方法可以做到这一点,这在我们对宇宙的理解中留下了一个巨大的漏洞。唯一成功地将 QFT 与广义相对论结合起来的理论是弦理论。该理论的自洽需要施加严格的数学条件。例如,除了我们习惯的三个空间维度之外,还必须存在六个额外的空间维度。为了解决这个问题,必须“压缩”,即假设额外的维度跨越卷曲的几何形状,这在当今的实验中是不可见的。一个粗略的类比是软管:从远处看,它看起来是一维的,但仔细观察时,会发现有一个额外的圆形方向。描述可观测宇宙的物理现象成为一个与某些空间的几何结构密切相关的问题。值得注意的是,弦理论带来了有关强耦合 QFT 描述的新思想。其中一种工具被称为全息术,它代表了这样一种想法,即我们的时空对更高维度的信息进行编码,就像全息图是三维图片的二维表示一样。事实证明,四维强耦合 QFT 与弱耦合五维引力理论相关,在该理论中我们可以应用微扰技术来执行计算。在过去的十年里,这个想法在理论物理学领域带来了许多令人兴奋的新发展。它还被用来理解在极端压力和温度条件(夸克胶子等离子体)下获得的实验结果。该项目的目标有两个:使用弦理论中的这些新工具来理解 QFT 的强耦合机制;并使用弦理论对今天观测到的四维时空进行建模。例如,弦理论中的许多思想和概念已经极大地改变了我们对强耦合 QFT 的思考方式。还有强耦合 QFT 的新示例,其中计算变得易于处理。虽然不是现实的模型,但它们与现实世界有许多共同的定性特征,否则很难理解。通过研究这些新的例子,我们希望阐明诸如限制之类的晦涩机制如何在实验感兴趣的理论中发挥作用。通过利用量子场论中的这些发展,我们希望能够揭示重现描述现代粒子物理学的弦紧化所需的确切条件。

项目成果

期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
An integrability primer for the gauge-gravity correspondence: an introduction
规范重力对应的可积性入门:简介
  • DOI:
    10.1088/1751-8113/49/32/320301
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Bombardelli D
  • 通讯作者:
    Bombardelli D
Supersymmetry of IIA warped flux AdS and flat backgrounds
IIA 扭曲通量 AdS 和平坦背景的超对称性
Supersymmetry of AdS and flat IIB backgrounds
AdS 的超对称性和平坦的 IIB 背景
Protected string spectrum in AdS3/CFT2 from worldsheet integrability
保护 AdS3/CFT2 中的弦谱免受世界表可积性影响
All Killing superalgebras for warped AdS backgrounds
所有杀死扭曲广告背景的超级代数
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Konstadinos Sfetsos其他文献

Konstadinos Sfetsos的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

面向创新链的前沿科技领域多层次创新网络结构、演化及绩效影响机制研究
  • 批准号:
    72174112
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
环保领域政策干预对非目标行为溢出效应的发生路径与影响因素研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
新技术、新商业在非相关领域的溢出影响:高效性、透明性、模糊性、便利性重塑消费者行为
  • 批准号:
    72172059
  • 批准年份:
    2021
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
政府角色对合作治理绩效的影响研究:以技术标准领域为例
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Fundamental Implications of Fields, Strings and Gravity
场、弦和引力的基本含义
  • 批准号:
    ST/X000656/1
  • 财政年份:
    2023
  • 资助金额:
    $ 34.55万
  • 项目类别:
    Research Grant
Paleointensity extremes: Dynamic implications and future fields
古强度极值:动态影响和未来领域
  • 批准号:
    NE/P017266/1
  • 财政年份:
    2018
  • 资助金额:
    $ 34.55万
  • 项目类别:
    Fellowship
How pressure influences the magnetic properties of titanomagnetite and iron with implications for magnetic anomalies and core fields
压力如何影响钛磁铁矿和铁的磁性,并对磁异常和核心场产生影响
  • 批准号:
    170001569
  • 财政年份:
    2010
  • 资助金额:
    $ 34.55万
  • 项目类别:
    Priority Programmes
Neural Basis of Perceiving Control: Implications for Emotion Regulation
感知控制的神经基础:对情绪调节的影响
  • 批准号:
    8323511
  • 财政年份:
    2010
  • 资助金额:
    $ 34.55万
  • 项目类别:
Neural Basis of Perceiving Control: Implications for Emotion Regulation
感知控制的神经基础:对情绪调节的影响
  • 批准号:
    8118525
  • 财政年份:
    2010
  • 资助金额:
    $ 34.55万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了