Fundamental Implications of Fields, Strings and Gravity
场、弦和引力的基本含义
基本信息
- 批准号:ST/X000656/1
- 负责人:
- 金额:$ 29.26万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2023
- 资助国家:英国
- 起止时间:2023 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
In the 20th century, General Relativity and Quantum Field Theory emerged as extraordinarily successful theories used to describe physics on very large, and very small scales respectively. They are however incompatible when considering very massive, but very small objects, such as black hole singularities, and the beginning of the universe. New physics is required to provide a unified theory, and String Theory is the most promising candidate, as it can be used to obtain Einstein's equations from a quantum system. It has produced new ways to understand aspects of black hole evaporation, predicted by Hawking, as well as novel "holographic" techniques leading to remarkable relationships between quantities computed using geometric methods and observables in strongly coupled quantum field theories which have hitherto been difficult to calculate. Our proposal is focused on developing new geometric and algebraic techniques to investigate key aspects of quantum theories and geometric solutions related to String Theory. In holography, we will investigate how geometry emerges from matrix quantum mechanics, and use this to probe how physical properties of black holes vary during the evaporation process, and also to describe how the related quantum states correspond to geometric solutions. Our group has expertise in machine learning and numerical simulation techniques which will be utilized in this analysis. We will also use our expertise in integrability to examine in detail the holographic duality between quantum states and geometric solutions. Integrability provides powerful tools for solving certain quantum systems by extending the solutions away from a limited range of physical parameters, to more general cases. We will develop new methods for analysing massless quantum states in String Theory, leading to a much more complete understanding of these theories. Further progress will also be made in applying "higher geometry" methods to investigate hidden geometric structures in amplitudes. Amplitudes are crucial for describing quantum state interactions, and are needed in particle physics experiments, however amplitude calculations are usually very complicated. Using higher geometry algebraic structures we will construct new geometric and algebraic methods for amplitude calculation.In terms of geometry, we will develop new methods to classify the algebraic structures associated with de-Sitter solutions in ten and eleven dimensional supergravities, which are the low energy limit of string theory. Such solutions are relevant to cosmology, and de-Sitter geometries also arise in the geometry near to the event horizons of certain black holes, and holographic methods have been developed to understand the quantum states associated with these geometries. Remarkably, there has recently also been a connection made between String Theory geometry, and equations in hydrodynamics. Certain gravitational solutions, such as geometries associated with black hole horizons, give rise to the Navier-Stokes equations of hydrodynamics. We will investigate if this construction can be generalized, utilizing special Penrose co-ordinates, to see if hydrodynamic equations are more generic properties of supergravity solutions. We will also examine if "higher geometry" methods developed in String Theory can be adapted to describe hydrodynamic solutions such as vortices, which are relevant to the study of atmospheric fronts.These interconnected projects will produce results of significant impact in theoretical physics, with potential real-world applications in experimental particle physics, machine learning techniques, and properties of black holes. We will pursue this work using our extensive national and international collaborations. It will help to answer important key elements of the Science Challenges supported by STFC, relating to the true nature of gravity and space-time, and what are the fundamental laws, particles, symmetries and fields of physics.
20 世纪,广义相对论和量子场论作为极其成功的理论出现,分别用于描述非常大和非常小尺度的物理学。然而,当考虑非常大但非常小的物体(例如黑洞奇点和宇宙的开端)时,它们是不相容的。需要新的物理学来提供统一的理论,而弦理论是最有希望的候选者,因为它可以用来从量子系统中获得爱因斯坦方程。它产生了理解霍金预测的黑洞蒸发的新方法,以及新颖的“全息”技术,导致使用几何方法计算的量与强耦合量子场论中的可观测量之间的显着关系,而迄今为止这些关系一直难以计算。我们的提案侧重于开发新的几何和代数技术,以研究量子理论和与弦理论相关的几何解决方案的关键方面。在全息术中,我们将研究几何如何从矩阵量子力学中出现,并用它来探究黑洞的物理性质在蒸发过程中如何变化,并描述相关的量子态如何与几何解相对应。我们的团队拥有机器学习和数值模拟技术方面的专业知识,这些技术将用于此分析。我们还将利用我们在可积性方面的专业知识来详细研究量子态和几何解之间的全息对偶性。可积性通过将解决方案从有限范围的物理参数扩展到更一般的情况,为解决某些量子系统提供了强大的工具。我们将开发用于分析弦理论中的无质量量子态的新方法,从而更全面地理解这些理论。在应用“更高几何”方法来研究振幅中隐藏的几何结构方面也将取得进一步的进展。振幅对于描述量子态相互作用至关重要,并且是粒子物理实验所需要的,但振幅计算通常非常复杂。使用更高的几何代数结构,我们将构建新的几何和代数方法来计算振幅。在几何方面,我们将开发新的方法来对与十维和十一维超重力(低能)中的德西特解相关的代数结构进行分类弦理论的极限。这些解决方案与宇宙学相关,并且去西特几何结构也出现在某些黑洞事件视界附近的几何结构中,并且已经开发了全息方法来理解与这些几何结构相关的量子态。值得注意的是,最近弦理论几何与流体动力学方程之间也建立了联系。某些引力解,例如与黑洞视界相关的几何形状,产生了流体动力学的纳维-斯托克斯方程。我们将研究这种构造是否可以推广,利用特殊的彭罗斯坐标,看看流体动力学方程是否是超重力解的更通用的属性。我们还将研究弦理论中开发的“更高几何”方法是否可以适用于描述与大气锋面研究相关的涡流等流体动力学解决方案。这些相互关联的项目将产生对理论物理学产生重大影响的结果,具有潜在的潜力实验粒子物理、机器学习技术和黑洞特性的现实应用。我们将通过广泛的国内和国际合作来开展这项工作。它将有助于回答 STFC 支持的科学挑战的重要关键要素,涉及重力和时空的真实本质,以及物理的基本定律、粒子、对称性和场。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jan Gutowski其他文献
Jan Gutowski的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jan Gutowski', 18)}}的其他基金
Stongly Coupled Field Theories, String Theory and Gravity
强耦合场论、弦理论和引力
- 批准号:
ST/P000487/1 - 财政年份:2017
- 资助金额:
$ 29.26万 - 项目类别:
Research Grant
相似国自然基金
面向创新链的前沿科技领域多层次创新网络结构、演化及绩效影响机制研究
- 批准号:72174112
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
环保领域政策干预对非目标行为溢出效应的发生路径与影响因素研究
- 批准号:
- 批准年份:2021
- 资助金额:30 万元
- 项目类别:青年科学基金项目
新技术、新商业在非相关领域的溢出影响:高效性、透明性、模糊性、便利性重塑消费者行为
- 批准号:72172059
- 批准年份:2021
- 资助金额:48 万元
- 项目类别:面上项目
政府角色对合作治理绩效的影响研究:以技术标准领域为例
- 批准号:
- 批准年份:2020
- 资助金额:24 万元
- 项目类别:青年科学基金项目
前殖民地国家独立后政治地理空间的再领域化及其对区域地缘政治格局的影响机制研究——以印缅孟为例
- 批准号:
- 批准年份:2020
- 资助金额:55 万元
- 项目类别:面上项目
相似海外基金
Paleointensity extremes: Dynamic implications and future fields
古强度极值:动态影响和未来领域
- 批准号:
NE/P017266/1 - 财政年份:2018
- 资助金额:
$ 29.26万 - 项目类别:
Fellowship
Fundamental Implications of Fields, Strings and Gravity
场、弦和引力的基本含义
- 批准号:
ST/L000490/1 - 财政年份:2014
- 资助金额:
$ 29.26万 - 项目类别:
Research Grant
How pressure influences the magnetic properties of titanomagnetite and iron with implications for magnetic anomalies and core fields
压力如何影响钛磁铁矿和铁的磁性,并对磁异常和核心场产生影响
- 批准号:
170001569 - 财政年份:2010
- 资助金额:
$ 29.26万 - 项目类别:
Priority Programmes
Neural Basis of Perceiving Control: Implications for Emotion Regulation
感知控制的神经基础:对情绪调节的影响
- 批准号:
8323511 - 财政年份:2010
- 资助金额:
$ 29.26万 - 项目类别:
Neural Basis of Perceiving Control: Implications for Emotion Regulation
感知控制的神经基础:对情绪调节的影响
- 批准号:
8118525 - 财政年份:2010
- 资助金额:
$ 29.26万 - 项目类别: