Optical Interferometry Continuation of Cavendish Astrophysics Rolling Grant
卡文迪什天体物理学滚动资助的光学干涉测量延续
基本信息
- 批准号:ST/I006099/1
- 负责人:
- 金额:$ 12.93万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2011
- 资助国家:英国
- 起止时间:2011 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The success of the Hubble Space Telescope and the motivation for its successor, the James Webb Space Telescope, have been largely driven by the desire for images with resolutions an order of magnitude better than routinely achieved by ground-based telescopes. However, even this may be inadequate for understanding the physics underlying many important astrophysical phenomena and in many cases resolutions 10-100 times better than these flagship missions are required. Such milli- and sub-milli-arcsecond resolutions can only be delivered by optical/infrared interferometers which synthesize effective telescope diameters of 100s of meters using arrays of smaller telescopes. The Magdalena Ridge Observatory Interferometer (MROI) is an optical/IR imaging interferometer currently under construction in New Mexico in a partnership between New Mexico Tech (NMT) and the Cavendish Laboratory, Cambridge. Its Phase 1 implementation will combine light from six 1.4 m telescopes, separated by up to 350m, to permit imaging in the near-infrared with an angular resolution of 0.7 milli-arcseconds, i.e. 10 times better than a diffraction-limited 30 m-class telescope. The MROI builds on the success of other interferometers such as Georgia State's CHARA Array, the Keck Interferometer and the VLTI, which are now routinely used to tackle important astrophysical questions and which have demonstrated that interferometry can be a valuable tool for astronomers who are not interferometric specialists. By optimizing its design for the imaging of faint astrophysical targets, the MROI is expected to have a limiting sensitivity 10-100 times greater than has been realized by any optical/IR interferometer to date. It is the MROI's unique capability to deliver model-independent images at ultra-high resolution, efficiently, and at much higher sensitivity than has been previously realised that offers the most exciting potential for new science. The scope of this research will be very broad. Studies with first-generation IR-arrays have spanned topics as diverse as fundamental parameter estimation of stars, the molecular envelopes of evolved giants, the geometrical extension and evolution of novae ejecta, and the structure of AGN cores. All of these will be accessible at the MROI, though with much higher efficiency, sensitivity and completeness than has hitherto been available with the VLTI and similar current-generation arrays. The MROI is a joint activity of NMT and the Cavendish Laboratory. NMT are providing the majority of the capital funds, while Cavendish researchers - who pioneered interferometry at optical/IR wavelengths - are providing technical leadership and oversight of the array deployment. The proposed research reflects this partnership and will involve staff at the Cavendish completing three key tasks related to the commissioning of the MROI. These will be: * The development and delivery of the real-time control algorithms for the first-light instrument, a fringe tracking beam combiner. Here the goals will be to deliver the critical algorithms necessary to detect and track fringes on the faintest sources with high precision. * The design and coding of the first-light data reduction pipeline for the MROI. This software will be used to produce diagnostic measures critical for optimising the performance of the interferometer as well as producing the first science results from the MROI. * To lead the technical and scientific commissioning effort to deliver first fringes with the MROI. This activity will be led by two of the senior staff at the Cavendish who have had considerable experience of the alignment, integration and commissioning of a number of other interferometric arrays. These activities will form a significant contribution towards the completion of the array and put the UK in a leading position to exploit the science which will result from its operation.
哈勃太空望远镜的成功及其继任者詹姆斯·韦伯太空望远镜的动力很大程度上是由于人们对图像分辨率比地面望远镜通常达到的分辨率高一个数量级的渴望所驱动。然而,即使这样也可能不足以理解许多重要天体物理现象背后的物理原理,并且在许多情况下需要比这些旗舰任务高 10-100 倍的分辨率。这种毫角秒和亚毫角秒的分辨率只能通过光学/红外干涉仪提供,这些干涉仪使用较小的望远镜阵列合成数百米的有效望远镜直径。马格达莱纳岭天文台干涉仪 (MROI) 是一款光学/红外成像干涉仪,目前正在新墨西哥州由新墨西哥理工学院 (NMT) 和剑桥卡文迪什实验室合作建造。其第一阶段实施将结合来自六个相距 350m 的 1.4 m 望远镜的光线,以允许以 0.7 毫角秒的角分辨率进行近红外成像,即比衍射极限 30 m 级望远镜好 10 倍望远镜。 MROI 建立在其他干涉仪的成功基础上,例如佐治亚州立大学的 CHARA 阵列、凯克干涉仪和 VLTI,这些干涉仪现在通常用于解决重要的天体物理问题,并证明干涉测量对于非干涉测量的天文学家来说是一个有价值的工具专家。通过优化微弱天体物理目标成像的设计,MROI 的极限灵敏度预计将比迄今为止任何光学/红外干涉仪高出 10-100 倍。 MROI 具有独特的能力,能够以超高分辨率、高效且比以前意识到的高得多的灵敏度提供与模型无关的图像,为新科学提供了最令人兴奋的潜力。这项研究的范围将非常广泛。第一代红外阵列的研究涵盖了多种主题,如恒星的基本参数估计、演化巨星的分子包膜、新星喷射物的几何延伸和演化以及活动星系核核心的结构。所有这些都可以在 MROI 上实现,但其效率、灵敏度和完整性比迄今为止 VLTI 和类似的当前一代阵列要高得多。 MROI 是 NMT 和卡文迪什实验室的联合活动。 NMT 提供大部分资本,而卡文迪什研究人员(光学/红外波长干涉测量的先驱)则提供技术领导和阵列部署的监督。拟议的研究反映了这种伙伴关系,并将让卡文迪什的工作人员完成与 MROI 调试相关的三项关键任务。这些将是: * 开发和交付第一光仪器(条纹跟踪光束组合器)的实时控制算法。这里的目标是提供高精度检测和跟踪最微弱光源上的条纹所需的关键算法。 * MROI 的第一光数据缩减管道的设计和编码。该软件将用于生成对于优化干涉仪性能以及从 MROI 生成第一个科学结果至关重要的诊断措施。 * 领导技术和科学调试工作,以交付 MROI 的第一批成果。这项活动将由卡文迪什的两名高级工作人员领导,他们在许多其他干涉阵列的对准、集成和调试方面拥有丰富的经验。这些活动将为阵列的完成做出重大贡献,并使英国在利用其运行所产生的科学方面处于领先地位。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Resolving the terrestrial planet forming regions of HD 113766 and HD 172555 with MIDI MIDI observations of HD 113766 and HD 172555
使用 HD 113766 和 HD 172555 的 MIDI MIDI 观测解析 HD 113766 和 HD 172555 的类地行星形成区域
- DOI:10.1111/j.1365-2966.2012.20816.x
- 发表时间:2012
- 期刊:
- 影响因子:4.8
- 作者:Smith R
- 通讯作者:Smith R
The declination degeneracy in interferometric astrometry
干涉天体测量中的赤纬简并度
- DOI:10.1051/0004-6361/201118393
- 发表时间:2012
- 期刊:
- 影响因子:6.5
- 作者:Buscher D
- 通讯作者:Buscher D
The 2012 interferometric imaging beauty contest
2012年干涉成像选美大赛
- DOI:10.1117/12.924907
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Baron F
- 通讯作者:Baron F
Long-exposure filtering of turbulence-degraded wavefronts.
湍流退化波前的长时间曝光过滤。
- DOI:10.1364/ao.50.005303
- 发表时间:2011
- 期刊:
- 影响因子:1.9
- 作者:Gordon JA
- 通讯作者:Gordon JA
Numerical simulations of MROI imaging of GEO satellites
GEO卫星MROI成像数值模拟
- DOI:10.1109/aero.2012.6187165
- 发表时间:2012
- 期刊:
- 影响因子:0
- 作者:Payne I
- 通讯作者:Payne I
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Christopher Haniff其他文献
Christopher Haniff的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Christopher Haniff', 18)}}的其他基金
Support of the Astronomical Research of the Cavendish Astrophysics Group
卡文迪什天体物理学组天文研究的支持
- 批准号:
ST/V000918/1 - 财政年份:2021
- 资助金额:
$ 12.93万 - 项目类别:
Research Grant
相似国自然基金
融合高密度干涉条纹图谱和三维实物打印的微尺度显微立体视觉形貌测量法机理研究
- 批准号:51675014
- 批准年份:2016
- 资助金额:62.0 万元
- 项目类别:面上项目
基于原子气体吸收谱线多普勒展宽实现玻尔兹曼常数的高精度测定
- 批准号:91536115
- 批准年份:2015
- 资助金额:90.0 万元
- 项目类别:重大研究计划
用非线性波包干涉测量法重构分子波函数
- 批准号:11474178
- 批准年份:2014
- 资助金额:100.0 万元
- 项目类别:面上项目
基于seismic interferometry的海上勘探数据重建方法研究
- 批准号:40904030
- 批准年份:2009
- 资助金额:20.0 万元
- 项目类别:青年科学基金项目
基于地震干涉测量法的VSP数据层间多次波成像研究
- 批准号:40974066
- 批准年份:2009
- 资助金额:50.0 万元
- 项目类别:面上项目
相似海外基金
SWIFT-SAT: Unlimited Radio Interferometry: A Hardware-Algorithm Co-Design Approach to RAS-Satellite Coexistence
SWIFT-SAT:无限无线电干涉测量:RAS 卫星共存的硬件算法协同设计方法
- 批准号:
2332534 - 财政年份:2024
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
- 批准号:
2333941 - 财政年份:2024
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant
Atom Interferometry with Ultracold Strontium Atoms
超冷锶原子的原子干涉测量
- 批准号:
2885950 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Studentship
Microwave Atom Chip Traps for Atom Interferometry
用于原子干涉测量的微波原子芯片陷阱
- 批准号:
2308767 - 财政年份:2023
- 资助金额:
$ 12.93万 - 项目类别:
Standard Grant