Bloch wave interferometry in semiconductors and correlated insulators
半导体和相关绝缘体中的布洛赫波干涉测量
基本信息
- 批准号:2333941
- 负责人:
- 金额:$ 73.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:Standard Grant
- 财政年份:2024
- 资助国家:美国
- 起止时间:2024-01-15 至 2026-12-31
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
Nontechnical description:Meeting society’s future demands for information technology requires ever-increasing control over semiconducting materials, from which electronics are made, and light, which transmits vast quantities of information at continually-increasing speeds. Quantum mechanics tells us that electrons in semiconductors should behave like waves. A detailed understanding of these electronic waves is required to engineer the next generations of electronic and optical devices. Recently, using a powerful, building-sized laser to rapidly accelerate charges in a semiconductor and smash them back together before they can collide with anything else, the principle investigator’s group has been able to observe two kinds of accelerated electronic waves interfering with one another, analogous to the interaction of ripples from two stones thrown into a pond. From the pattern of the interference, the principle investigator’s group has been able, for the first time, to reconstruct directly from experimental data the mathematical form of interfering electronic waves in a semiconductor. In this project, the research team leverages the interference of electronic waves to develop a method to precisely measure important parameters that govern both the motion of charges in and the absorption and emission of light from semiconductors. The research is carried out by graduate and undergraduate student researchers who, in the process, get rigorous training in semiconductor physics, optics, and, most importantly, solving hard problems that have never been solved before. With this training, these researchers will be well-positioned to contribute to developing future information technologies in industry, academia, or government. These researchers also participate in the PI’s popular educational outreach program that has, since 2005, brought attractive, engaging and robust "Questboards" to local community science nights for K-12 students to get hands-on experience with electrical circuits.Technical description:Interferometry is a powerful tool for measuring information encoded in waves of all sorts. Charged quasiparticles in solids have a wavelike character that is captured in their Bloch wavefunctions. In 2011, the principle investigator’s group reported the experimental discovery of high-order sideband generation, in which a semiconductor driven simultaneously by a weak near-infrared laser and a strong THz laser can emit many dozen near-infrared sidebands in a comb-like spectrum with comb teeth separated by an integer multiple of the THz frequency. Recently, the group reported that the polarizations of sidebands emitted from bulk gallium arsenide (GaAs) can be viewed as interferograms from a Michelson-like interferometer for Bloch waves, and calculated using a simple analytical model. This project uses quantitative Bloch-wave interferometry in three ways: (1) reconstruct the effective Hamiltonian, precise band gaps, and de-phasing processes of electron-hole pairs in bulk GaAs. This will open the door to much more precise electronic structure measurements in the technologically-critical direct-gap semiconductors; (2) measure anomalous displacements (transverse to the direction of the accelerating electric field) of holes in GaAs quantum wells caused by extremely large valence band Berry curvatures. This will be among the cleanest demonstrations of anomalous velocity—first predicted nearly 70 years ago—and may enable a direct measurement of the local Berry curvature of a band; (3) extend Bloch-wave interferometry to Mott insulators, beginning with the van der Waals antiferromagnet NiPS3, a promising candidate because of its extremely bright and narrow exciton, opening a new window into the electronic structure of strongly-correlated insulators.This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.
非技术描述:满足社会未来对信息技术的需求需要不断加强对制造电子产品的半导体材料和以不断提高的速度传输大量信息的光的控制。量子力学告诉我们,半导体中的电子应该表现出行为。最近,需要对这些电子波进行详细了解,以设计下一代电子和光学设备,使用强大的、建筑物大小的激光器来快速加速半导体中的电荷并将其击碎。在它们与其他物体碰撞之前,首席研究员的小组已经能够观察到两种相互干扰的加速电子波,类似于扔进池塘的两块石头产生的涟漪的相互作用。研究人员的群原理首次能够直接根据实验数据重建半导体中干扰电子波的数学形式。在该项目中,研究团队利用电子波的干扰开发了一种精确测量的方法。控制两者的重要参数该研究由研究生和本科生研究人员进行,他们在此过程中接受了半导体物理、光学方面的严格培训,最重要的是,解决了半导体中的难题。通过这次培训,这些研究人员将能够为工业界、学术界或政府的未来信息技术的发展做出贡献。这些研究人员还参与了 PI 自 2005 年以来广受欢迎的教育推广计划。有吸引力、有吸引力且稳健为 K-12 学生提供当地社区科学之夜的“任务板”,让他们获得电路的实践经验。技术描述:干涉测量是一种强大的工具,用于测量固体中的带电准粒子具有波状特征的信息。 2011 年,首席研究员的团队报告了高阶边带生成的实验发现,其中半导体由弱近红外激光和强太赫兹激光器可以在梳状光谱中发射数十个近红外边带,梳齿间隔为太赫兹频率的整数倍。最近,该小组报告说,从块状砷化镓(GaAs)发射的边带的偏振可以。可以被视为布洛赫波类迈克尔逊干涉仪的干涉图,并使用简单的分析模型进行计算。该项目通过三种方式使用定量布洛赫波干涉测量: (1) 重建块状 GaAs 中电子-空穴对的有效哈密顿量、精确带隙和移相过程,这将为技术关键的直接带隙半导体中更精确的电子结构测量打开大门 (2) ) ) 测量由极大的价带贝里曲率引起的 GaAs 量子阱中空穴的反常位移(垂直于加速电场的方向),这将是反常速度的最清晰的演示之一。近 70 年前就预测过,并且可以直接测量能带的局部贝里曲率;(3) 将布洛赫波干涉测量扩展到莫特绝缘体,从范德瓦尔斯反铁磁体 NiPS3 开始,它是一个有前途的候选者,因为它极其明亮和窄激子,为强相关绝缘体的电子结构打开了新的窗口。该奖项反映了 NSF 的法定使命,并通过使用基金会的评估进行评估,认为值得支持智力价值和更广泛的影响审查标准。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mark Sherwin其他文献
Mark Sherwin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mark Sherwin', 18)}}的其他基金
MRI: Development of an Agile Free-Electron-Laser-Powered Pulsed Electron Magnetic Resonance (FEL-EMR) Spectrometer
MRI:开发敏捷自由电子激光驱动脉冲电子磁共振 (FEL-EMR) 能谱仪
- 批准号:
2117994 - 财政年份:2021
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
Colliding quasiparticles to reconstruct their effective Hamiltonians
碰撞准粒子重建其有效哈密顿量
- 批准号:
2004995 - 财政年份:2020
- 资助金额:
$ 73.03万 - 项目类别:
Continuing Grant
Triggered functional dynamics of proteins in biomimetic environments by time-resolved electron paramagnetic resonance at very high magnetic fields
通过极高磁场下的时间分辨电子顺磁共振触发仿生环境中蛋白质的功能动力学
- 批准号:
2025860 - 财政年份:2020
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
MRI: Development of a single-mode terahertz free electron lasers for research in materials, physics, chemistry and biology
MRI:开发单模太赫兹自由电子激光器,用于材料、物理、化学和生物学研究
- 批准号:
1626681 - 财政年份:2016
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
Time-resolved conformational changes of proteins by very high frequency Gd3+ EPR
通过甚高频 Gd3 EPR 实现蛋白质的时间分辨构象变化
- 批准号:
1617025 - 财政年份:2016
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
Robust Gd3+ -based spin labels for structural studies of membrane proteins
用于膜蛋白结构研究的基于 Gd3 的稳健自旋标签
- 批准号:
1244651 - 财政年份:2013
- 资助金额:
$ 73.03万 - 项目类别:
Continuing Grant
MRI: Development of a Free-Electron Laser for Ultrafast Pulsed Electron Paramagnetic Resonance
MRI:开发用于超快脉冲电子顺磁共振的自由电子激光器
- 批准号:
1126894 - 财政年份:2011
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
Quantum Coherence and Dynamical Instability in Quantum Wells Driven by Intense Terahertz Fields.
强太赫兹场驱动的量子井中的量子相干性和动态不稳定性。
- 批准号:
1006603 - 财政年份:2010
- 资助金额:
$ 73.03万 - 项目类别:
Continuing Grant
相似国自然基金
台风-海浪作用下考虑多种失效模式的浮式风力机结构可靠度研究
- 批准号:52308507
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
WASP家族蛋白WAVE2调节T细胞静息和活化的机制研究
- 批准号:32300748
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
黑潮区星载合成孔径雷达海面风和海浪探测研究
- 批准号:42376174
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
基于气-海-浪-冰区域耦合模式的海浪对南极海冰影响研究
- 批准号:42376237
- 批准年份:2023
- 资助金额:51 万元
- 项目类别:面上项目
海浪驱动压电钛酸钡陶瓷涂层在船体抗污防腐中的作用机制
- 批准号:
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:
相似海外基金
Cryogenic Interferometry and Suspension Development for Future Gravitational Wave Detectors.
未来引力波探测器的低温干涉测量和悬架开发。
- 批准号:
2887811 - 财政年份:2023
- 资助金额:
$ 73.03万 - 项目类别:
Studentship
Experimental investigation of non-equilibrium quantum systems by matter-wave interferometry
物质波干涉测量非平衡量子系统的实验研究
- 批准号:
2749748 - 财政年份:2022
- 资助金额:
$ 73.03万 - 项目类别:
Studentship
Collaborative Research: PIC: Slow Wave Enhanced Electrooptically Tuned Michelson Interferometer Biosensor for On-Chip Dual Polarization Interferometry
合作研究:PIC:用于片上双偏振干涉测量的慢波增强型电光调谐迈克尔逊干涉仪生物传感器
- 批准号:
2210722 - 财政年份:2022
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
Collaborative Research: PIC: Slow Wave Enhanced Electrooptically Tuned Michelson Interferometer Biosensor for On-Chip Dual Polarization Interferometry
合作研究:PIC:用于片上双偏振干涉测量的慢波增强型电光调谐迈克尔逊干涉仪生物传感器
- 批准号:
2210707 - 财政年份:2022
- 资助金额:
$ 73.03万 - 项目类别:
Standard Grant
Cryogenic interferometry for 3rd generation gravitational wave detectors
第三代引力波探测器低温干涉测量
- 批准号:
2446751 - 财政年份:2020
- 资助金额:
$ 73.03万 - 项目类别:
Studentship