Towards enabling sustainable expansion of offshore wind while protecting marine benthic biodiversity and functioning (B-EcoWIND)

实现海上风电的可持续扩张,同时保护海洋底栖生物多样性和功能(B-EcoWIND)

基本信息

项目摘要

Meeting energy demands in the most sustainable way is a major challenge for society. Offshore wind farms - groupings of wind turbines on submerged sediments - offers part of the solution for the energy transition that is needed to mitigate climate change, and the UK has committed to a dramatic and rapid expansion of wind farms in the seas around the UK. However, shelf sea sediments host diverse and productive communities that play a very important role in processing nutrients and carbon that underpin the entire food web. Many species are also important prey items for higher trophic levels, including sea mammals and birds. At the same time, many sediment-dwelling species, such as clams, worms, shrimp and some fish are so intimately associated with the sediment environment that they are particularly susceptible to disturbance. This raises concern as the expansion of offshore wind currently underway means that marine ecosystems are highly likely to experience a large proportional change in biodiversity and ecosystem functioning if marine policy and the management of increasing pressures on UK marine ecosystems is not correctly guided.In this project, we have assembled marine ecologists, engineers and computational scientists to work together to understand ecosystem responses to the cumulative pressures of a large increase in deployment of offshore wind, considered in combination with other pressures that marine ecosystems are facing caused by human activity (bottom fishing, shipping) and the effects of climate change (acidification, warming, low oxygen). To do this, we will collate available data on many aspects of the marine environment and fill in gaps in these data by collecting targeted information about how species interact and behave around offshore wind structures using autonomous vehicles and use artificial intelligence algorithms to identify any associations and patterns. This analysis will also tell us which species are vulnerable to change and highlight areas of concern. Next, we will carry out a series of experiments that will test whether representative species are susceptible to certain types of noise and vibration, electromagnetism and localised heating which are common sources of disturbance associated with wind farms. We will also bring back intact assemblages from areas experiencing different levels of fishing intensity and expose them to the same pressures to see whether species that are experiencing one set of pressures will respond in the same way as those that are not experiencing other pressures. This will tell us how species respond under current conditions, but the pace of climate change means that an additional set of pressures will also effects these species. Hence, we will carry out the same experiments under simulated future conditions (warmer and with altered seawater chemistry). The results of these experiments will tell us whether species benefit or are compromised by certain combinations of pressures, and our expectation is that some species and communities will fair better than others. We will use this information to develop models that allow us to predict how other species that we have not considered, but which share similar traits, may respond. To do this we will use sophisticated statistical models that take into account wider information and make predictions about what marine systems in the future might look like in the future under different scenarios of habitat use, human activity and climate change. In a final step, we will develop a decision support tool that will allow the complexities, including positive and negative feedbacks, to be taken into account by decision and policy makers so they can see the likely consequences of consenting offshore wind in specific locations. Our tool will support the sustainable growth of the offshore wind industry by helping decision makers to make informed decisions that minimise pressure on our marine ecosystems.
以最可持续的方式满足能源需求是社会面临的重大挑战。海上风电场——水下沉积物上的风力涡轮机群——为缓解气候变化所需的能源转型提供了部分解决方案,英国已承诺在英国周边海域大幅、快速地扩建风电场。然而,陆架海沉积物拥有多样化且富有成效的群落,这些群落在支撑整个食物网的营养物和碳的加工过程中发挥着非常重要的作用。许多物种也是较高营养级的重要猎物,包括海洋哺乳动物和鸟类。与此同时,许多沉积物物种,如蛤、蠕虫、虾和一些鱼类与沉积物环境密切相关,因此特别容易受到干扰。这引起了人们的关注,因为目前正在进行的海上风电扩张意味着,如果海洋政策和对英国海洋生态系统日益增加的压力的管理没有得到正确指导,海洋生态系统很可能会经历生物多样性和生态系统功能的巨大比例变化。 ,我们聚集了海洋生态学家、工程师和计算科学家,共同努力了解生态系统对海上风电部署大幅增加的累积压力的反应,并结合海洋生态系统面临的人类活动(海底捕捞)造成的其他压力进行考虑,运输)和效果气候变化(酸化、变暖、低氧)。为此,我们将整理有关海洋环境许多方面的可用数据,并通过使用自动驾驶车辆收集有关物种如何在海上风力结构周围相互作用和行为的有针对性的信息来填补这些数据的空白,并使用人工智能算法来识别任何关联和模式。该分析还将告诉我们哪些物种容易受到变化并强调值得关注的领域。接下来,我们将进行一系列实验,测试代表性物种是否容易受到某些类型的噪音和振动、电磁和局部加热的影响,这些都是与风电场相关的常见干扰源。我们还将从经历不同捕捞强度水平的地区带回完整的组合,并将它们置于相同的压力下,看看正在经历一组压力的物种是否会以与没有经历其他压力的物种相同的方式做出反应。这将告诉我们物种在当前条件下如何反应,但气候变化的速度意味着一系列额外的压力也将影响这些物种。因此,我们将在模拟未来条件(变暖和海水化学成分改变)下进行相同的实验。这些实验的结果将告诉我们物种是否会因某些压力组合而受益或受到损害,我们的期望是某些物种和群落会比其他物种和群落表现得更好。我们将利用这些信息来开发模型,使我们能够预测我们未考虑但具有相似特征的其他物种可能会如何反应。为此,我们将使用复杂的统计模型,考虑更广泛的信息,并预测未来海洋系统在不同的栖息地利用、人类活动和气候变化情景下可能会是什么样子。最后一步,我们将开发一个决策支持工具,使决策者和政策制定者能够考虑包括积极和消极反馈在内的复杂性,以便他们能够看到在特定地点同意海上风电可能产生的后果。我们的工具将帮助决策者做出明智的决策,最大限度地减少对海洋生态系统的压力,从而支持海上风电行业的可持续增长。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Clement Garcia其他文献

Assessment of benthic ecosystem functioning through trophic web modelling: the example of the eastern basin of the English Channel and the Southern Bight of the North Sea
通过营养网模型评估底栖生态系统功能:以英吉利海峡东部盆地和北海南湾为例
  • DOI:
    10.1111/j.1439-0485.2011.00428.x
  • 发表时间:
    2011
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Clement Garcia;P. Chardy;J. Dewarumez;J. Dauvin
  • 通讯作者:
    J. Dauvin
Different bottom trawl fisheries have a differential impact on the status of the North Sea seafloor habitats
不同的底拖网渔业对北海海底生境状况有不同的影响
  • DOI:
    10.1093/icesjms/fsaa050
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    3.3
  • 作者:
    A. Rijnsdorp;J. Hiddink;P. D. Denderen;N. Hintzen;O. R. Eigaard;S. Valanko;Francois Bastardie;S. Bolam;P. Boulcott;Josefine Egekvist;Clement Garcia;G. Hoey;P. Jonsson;P. Laffargue;J. Nielsen;G. Piet;M. Sköld;T. Kooten
  • 通讯作者:
    T. Kooten
Understanding the influence of man-made structures on the ecosystem functions of the North Sea (UNDINE)
了解人造结构对北海生态系统功能的影响 (UNDINE)
  • DOI:
  • 发表时间:
    2018
  • 期刊:
  • 影响因子:
    0
  • 作者:
    J. Dannheim;J. Beerman;G. Lacroix;D. Mesel;F. Kerckhof;I. Schön;S. Degraer;S. Birchenough;Clement Garcia;J. Coolen;H. Lindeboom;P. Luttikhuizen
  • 通讯作者:
    P. Luttikhuizen
Trawl fishing impacts on the status of seabed fauna in diverse regions of the globe
拖网捕捞对全球不同地区海底动物群状况的影响
  • DOI:
    10.1111/faf.12506
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.7
  • 作者:
    T. Mazor;C. Pitcher;W. Rochester;M. Kaiser;J. Hiddink;S. Jennings;R. Amoroso;R. McConnaughey;A. Rijnsdorp;A. Parma;P. Suuronen;J. Collie;M. Sciberras;L. Atkinson;D. Durholtz;J. Ellis;S. Bolam;M. Schratzberger;E. Couce;J. Eggleton;Clement Garcia;P. Kainge;Sarah C. Paulus;Johannes N. Kathena;M. Gogina;P. D. van Denderen;A. Keller;B. H. Horness;R. Hilborn
  • 通讯作者:
    R. Hilborn
Nuclear power and coastal birds: predicting the ecological consequences of warm-water outflows
核电和沿海鸟类:预测温水外流的生态后果
  • DOI:
    10.1016/j.ecolmodel.2016.09.017
  • 发表时间:
    2016
  • 期刊:
  • 影响因子:
    3.1
  • 作者:
    Clement Garcia;R. Stillman;R. Forster;T. Silva;J. Bremner
  • 通讯作者:
    J. Bremner

Clement Garcia的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

区块链使能的物联网数据安全可信机制研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
天地一体化信息网络中的缓存使能高效内容传输研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
滋养对手?考虑平台使能的自有品牌引入与制造商入侵策略研究
  • 批准号:
    72272069
  • 批准年份:
    2022
  • 资助金额:
    45 万元
  • 项目类别:
    面上项目
机器学习使能的分布式数据管理理论与技术
  • 批准号:
    62232009
  • 批准年份:
    2022
  • 资助金额:
    285 万元
  • 项目类别:
    重点项目
区块链使能情境下供应链商业模式创新:影响因素与双刃剑效应的追踪研究
  • 批准号:
  • 批准年份:
    2021
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

International Centre-to-Centre Collaboration: New catalysts for acetylene processes enabling a sustainable future
国际中心间合作:乙炔工艺的新型催化剂实现可持续的未来
  • 批准号:
    EP/Z531285/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X005003/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004864/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004775/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X00418X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 30.45万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了