Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)

实现季节性分层海洋的可持续风能扩张 (eSWEETS3)

基本信息

  • 批准号:
    NE/X00418X/1
  • 负责人:
  • 金额:
    $ 39.98万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

The need for the UK to shift to NetZero was highlighted at COP26 in Glasgow, and there is a clear need for UK energy security. UK policy to achieving these is based on massive expansion of off-shore wind. In 2022 Crown Estate Scotland "ScotWind" auctioned 9,000 km2 of sea space in the northern North Sea, with potential to provide almost 25 GW of offshore wind. Further developments are planned elsewhere, for example, the 300 MW Gwynt Glas Offshore Wind Farm in the Celtic Sea. These developments mark a shift in off-shore wind generation, away from shallow, well mixed coastal waters to deeper, seasonally stratified shelf seas This shift offers both challenges and opportunities which this proposal will explore. Large areas of the NW European shelf undergo seasonal thermal stratification. This annual development of a thermocline, separating warm surface water from cold deep water, is fundamental to biological productivity. Spring stratification drives a bloom of growth of the microscopic phytoplankton that are the base of marine food chains. During summer the surface layer is denuded of nutrients and primary production continues in a layer inside the thermocline, where weak turbulent mixing supplies nutrients from the deeper water and mixes oxygen and organic material downward. Tidal flows generate turbulence; the strength of turbulence controls the timing of the spring bloom, mixing at the thermocline, and the timing of remixing of the water in autumn/winter. Determining the interplay between mixing and stratification is fundamental to understanding how shelf sea biological production is supported.Arrays of large, floating wind turbines are now being deployed over large areas of seasonally-stratifying seas. These structures will inject extra turbulence into the water, as tidal flows move through and past them. This extra turbulence will alter the balance between mixing and stratification: spring stratification and the bloom could occur later, biological growth inside the thermocline could be increased, and more oxygen could be supplied into the deep water. There could be significant benefits of this extra mixing, but we need to understand the whole suite of effects caused by this mixing to aid large-scale roll-out of deep-water renewable energy.eSWEETS3 will conduct observations at an existing floating wind farm in the NW North Sea to determine how the extra mixing generated by tides passing through the farm affect the physics, biology and chemistry of the water. We will measure the mixing of nutrients, organic material and oxygen within the farm, and track the down-stream impacts of the mixing as the water moves away from the wind farm and the phytoplankton respond to the new supply of nutrients. We will use autonomous gliders to observe the up-stream and down-stream contrasts in stratification and biology all the way through the stratified part of the year. We will use our observations to formulate the extra mixing in a computer model of the NW European shelf, so that we can then use the model to predict how planned renewable energy developments over the next decades might affect our shelf seas and how those effects might help counter some of the changes we expect in a warming climate.Stratification is so fundamental to how our seas support biological production that we will develop a new, cost-effective way of monitoring it. We will work with the renewables industry and modellers at the UK Met Office on a technique that allows temperature measurements to be made along the power cables that lie on the seabed between wind farms and the coast. Our vision is that large-scale roll-out of windfarms will lead to the ability to measure stratification across the entire shelf. This monitoring will help the industry (knowledge of operating conditions), government regulators (environment responses to climate change) and to operational scientists at the UK Met Office (constraining models for better predictions).
在格拉斯哥举行的 COP26 上强调了英国转向 NetZero 的必要性,而且英国的能源安全也有明显的需要。英国实现这些目标的政策是基于大规模扩张海上风电。 2022 年,苏格兰皇冠地产“ScotWind”拍卖了北海北部 9,000 平方公里的海域,有望提供近 25 吉瓦的海上风电。其他地方还计划进一步开发,例如位于凯尔特海的 300 兆瓦 Gwynt Glas 海上风电场。这些发展标志着海上风力发电的转变,从浅水、混合良好的沿海水域转向更深、季节性分层的陆架海。这种转变既带来了本提案将探讨的挑战也带来了机遇。欧洲西北部陆架的大片地区经历季节性热分层。每年都会形成的温跃层将温暖的表层水与寒冷的深水分开,对于生物生产力至关重要。春季分层推动了作为海洋食物链基础的微小浮游植物的大量生长。在夏季,表层的营养物质被剥夺,初级生产在温跃层内的一层继续进行,其中弱的湍流混合从更深的水中提供营养物质,并将氧气和有机物质向下混合。潮汐流产生湍流;湍流的强度控制着春季开花、在温跃层混合的时间,以及秋季/冬季水重新混合的时间。确定混合和分层之间的相互作用对于理解如何支持陆架海生物生产至关重要。大型浮动风力涡轮机阵列现在正在大面积的季节性分层海洋上部署。当潮汐流穿过它们时,这些结构将向水中注入额外的湍流。这种额外的湍流将改变混合和分层之间的平衡:春季分层和水华可能会发生得更晚,温跃层内的生物生长可能会增加,并且更多的氧气可以供应到深水中。这种额外的混合可能会带来显着的好处,但我们需要了解这种混合造成的全套影响,以帮助大规模推广深水可再生能源。eSWEETS3 将在现有的浮动风电场进行观测北海西北部,以确定经过农场的潮汐产生的额外混合如何影响水的物理、生物和化学。我们将测量风电场内养分、有机物质和氧气的混合情况,并跟踪当水离开风电场时混合对下游的影响以及浮游植物对新的养分供应的反应。我们将使用自主滑翔机在一年中的分层期间观察上游和下游在分层和生物学方面的对比。我们将利用我们的观察结果在欧洲西北部大陆架的计算机模型中制定额外的混合,以便我们可以使用该模型来预测未来几十年计划的可再生能源开发可能如何影响我们的大陆架海洋以及这些影响可能会如何帮助应对气候变暖所带来的一些变化。分层对于我们的海洋如何支持生物生产至关重要,因此我们将开发一种新的、具有成本效益的监测方式。我们将与可再生能源行业和英国气象局的建模人员合作,开发一种技术,可以沿着风电场和海岸之间的海底电缆进行温度测量。我们的愿景是,风电场的大规模推广将带来测量整个大陆架分层的能力。这种监测将有助于行业(了解运行条件)、政府监管机构(对气候变化的环境响应)和英国气象局的业务科学家(限制模型以实现更好的预测)。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Justin Dix其他文献

Justin Dix的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

供应链数字减碳能力的构建机理及其对可持续供应链绩效的作用机制研究
  • 批准号:
    72302183
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
在线零售的可持续配送系统设计与优化研究
  • 批准号:
    72310107001
  • 批准年份:
    2023
  • 资助金额:
    190 万元
  • 项目类别:
    国际(地区)合作与交流项目
气候变化风险下基于随机动态博弈的可持续投资与环境规制
  • 批准号:
    72361007
  • 批准年份:
    2023
  • 资助金额:
    26 万元
  • 项目类别:
    地区科学基金项目
面向跨域动态场景的可持续视觉迁移学习方法研究
  • 批准号:
    62376026
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
人工智能客服对可持续消费决策的影响与作用机理研究
  • 批准号:
    72371226
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目

相似海外基金

Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X005003/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004864/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004775/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004295/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Research Grant
Enabling Sustainable Wind Energy Expansion in Seasonally Stratified Seas (eSWEETS3)
实现季节性分层海洋的可持续风能扩张 (eSWEETS3)
  • 批准号:
    NE/X004953/1
  • 财政年份:
    2024
  • 资助金额:
    $ 39.98万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了