Modelling and managing critical zone relationships between soil, water and ecosystem processes across the Loess Plateau
黄土高原土壤、水和生态系统过程之间关键区域关系的建模和管理
基本信息
- 批准号:NE/N007433/1
- 负责人:
- 金额:$ 51.22万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2016
- 资助国家:英国
- 起止时间:2016 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The Loess Plateau of China covers an area 2.5x the size of the UK (some 640,000 square km) in the upper and middle reaches of China's Yellow River and is renowned for having the most severe soil erosion in the world; deforestation, over-grazing and poor agricultural practice have resulted in degenerated ecosystems, desertification and unproductive agriculture in the region. To control severe soil erosion on the Loess Plateau, the Chinese government imposed a series of policies for fragile ecosystems, such as the 1999 state-funded "Grain-for-Green" project, which has resulted in significant land use changes. Related programmes have produced beneficial effects on soil erosion and water cycles. However, the impact of these changes in soil and water processes on related ecosystem services is unknown and demands further study. The proposed research will focus on three spatial scales: slope, watershed, and region. It uses a combination of A) experiments to collect environmental, biological and agronomic data; B) remote sensing data and C) modelling approaches. A) Data collection: Four experimental stations located in four main topographical regions of the Plateau are chosen as case studies: 1) Ansai Comprehensive Experimental Station of Soil and Water Conservation; 2) Changwu Agro-ecology Experiment Station; 3) Guyuan Ecological Station; 4) Shenmu Erosion and Environment Station. At each station, treatments of different vegetative covers, slopes, and the practices of soil and water conservation at the plot scale were set up in the 1980s and data collections include: soil water, canopy size, runoff, soil losses and meteorological records. Most of the Chinese members of this project have been involved in prior studies at the stations.At the slope scale, additional environmental, biological and agronomic data will be monitored in a sub-set of the plots. At watershed scale, four watersheds where the stations are located will be monitored. The spatial distribution of the following variables will be measured: precipitation, soil properties, vegetative types, canopy size, runoff and soil loss.B) Remote sensing data collection: At the regional scale, remote sensing combined with ground-truthing data will be used to investigate the spatial variability of vegetation type, land cover, productivity, the components of water balance, soil losses, soil type, etc.C) Modelling approaches: a cascade approach will be used to build an improved model framework applied to different spatial scales. Mechanistic soil-water-plant models will be applied to the slope scale. Their outputs will then be used as inputs for models at watershed level. Spatial empirical/statistical models will be used at the regional level. Observed and collected data from A) and B) will be used to further develop, calibrate and validate our models.Model simulations at the slope level will be used to reveal the dynamic mechanisms in soil and water in different regions and analyse the effects of vegetation type, soil type, slope degree, climatic factors and management practice. Watershed models will estimate soil and water carrying capacity for different vegetation types, predict the effect of land use/cover changes on soil losses, water cycle and ecosystem services and evaluate management scenarios in the practices of soil and water conservation, vegetative changes, and ecosystem services. The soil and water carrying capacity for different vegetation types and the optimal ecosystem services will be addressed at the regional scale. Outreach workshops and demonstrations will disseminate knowledge to farmers and policy makers.The proposed research will elucidate the coupled relationships between soil and water processes and agro-ecosystem services at various scales, and evaluate the effects of vegetation cover and changes in land use on water cycle, soil erosion, and ecosystem services across the Loess Plateau.
中国黄土高原位于中国黄河中上游,面积是英国面积的2.5倍(约64万平方公里),是世界上水土流失最严重的地区;砍伐森林、过度放牧和不良农业做法导致该地区生态系统退化、荒漠化和农业低产。为了控制黄土高原严重的水土流失,中国政府针对脆弱的生态系统实施了一系列政策,例如1999年国家资助的“退耕还林”工程,导致土地利用发生重大变化。相关计划对土壤侵蚀和水循环产生了有益的影响。然而,这些土壤和水过程的变化对相关生态系统服务的影响尚不清楚,需要进一步研究。拟议的研究将重点关注三个空间尺度:坡度、流域和区域。它结合使用 A) 实验来收集环境、生物和农艺数据; B) 遥感数据和 C) 建模方法。 A)数据收集:选取位于高原四个主要地形区的四个实验站作为案例研究: 1)安塞水土保持综合实验站; 2)长武农业生态实验站; 3)固原生态站; 4)神木侵蚀与环境站。每个站点在 20 世纪 80 年代建立了不同植被覆盖、坡度的处理以及地块尺度的水土保持实践,收集的数据包括:土壤水、冠层大小、径流、土壤流失和气象记录。该项目的大多数中国成员都参与了站点的先前研究。在坡度尺度上,将在地块的子集中监测额外的环境、生物和农艺数据。在流域尺度上,将监测站所在的四个流域。将测量以下变量的空间分布:降水量、土壤性质、植被类型、冠层大小、径流和土壤流失。B) 遥感数据收集:在区域尺度上,将使用遥感与地面实况数据相结合研究植被类型、土地覆盖、生产力、水平衡组成部分、土壤流失、土壤类型等的空间变异性。C) 建模方法:将使用级联方法建立适用于不同空间尺度的改进模型框架。机械土壤-水-植物模型将应用于坡度尺度。然后,它们的输出将用作流域级别模型的输入。空间经验/统计模型将在区域层面使用。 A)和B)观测和收集的数据将用于进一步开发、校准和验证我们的模型。斜坡水平的模型模拟将用于揭示不同区域土壤和水的动态机制并分析植被的影响类型、土壤类型、坡度、气候因素和管理实践。流域模型将估算不同植被类型的土壤和水承载能力,预测土地利用/覆盖变化对土壤流失、水循环和生态系统服务的影响,并评估水土保持、植被变化和生态系统实践中的管理方案服务。将在区域尺度上研究不同植被类型的土壤和水分承载能力以及最佳生态系统服务。外展研讨会和示范活动将向农民和政策制定者传播知识。拟议的研究将阐明不同尺度的土壤和水过程以及农业生态系统服务之间的耦合关系,并评估植被覆盖和土地利用变化对水循环的影响黄土高原的土壤侵蚀和生态系统服务。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Sociatal Geo-Innovation, 20th AGILE Conference Proceedings
社会地理创新,第 20 届 AGILE 会议论文集
- DOI:
- 发表时间:2017
- 期刊:
- 影响因子:0
- 作者:Comber A
- 通讯作者:Comber A
The Importance of Scale and the MAUP for Robust Ecosystem Service Evaluations and Landscape Decisions
规模和 MAUP 对于稳健生态系统服务评估和景观决策的重要性
- DOI:http://dx.10.3390/land11030399
- 发表时间:2022
- 期刊:
- 影响因子:3.9
- 作者:Comber A
- 通讯作者:Comber A
The impact of varying semantics in spatial statistics
空间统计中不同语义的影响
- DOI:
- 发表时间:2018
- 期刊:
- 影响因子:0
- 作者:Comber A
- 通讯作者:Comber A
Impact of transition from permanent pasture to new swards on the nitrogen use efficiency, nitrogen and carbon budgets of beef and sheep production.
从永久牧场过渡到新牧场对牛羊生产的氮利用效率、氮和碳预算的影响。
- DOI:http://dx.10.1016/j.agee.2019.106572
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Carswell AM
- 通讯作者:Carswell AM
Deep soil water storage varies with vegetation type and rainfall amount in the Loess Plateau of China.
中国黄土高原深层土壤储水量随植被类型和降雨量的不同而变化。
- DOI:http://dx.10.1038/s41598-018-30850-7
- 发表时间:2018
- 期刊:
- 影响因子:4.6
- 作者:Cao R
- 通讯作者:Cao R
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Lianhai Wu其他文献
A case study on the effects of data temporal resolution on the simulation of water flux extremes using a process-based model at the grassland field scale
使用基于过程的草原尺度模型研究数据时间分辨率对水通量极值模拟的影响的案例研究
- DOI:
10.1016/j.agwat.2021.107049 - 发表时间:
2021-09-01 - 期刊:
- 影响因子:6.7
- 作者:
Lianhai Wu;S. Curceac;P. Atkinson;A. Milne;P. Harris - 通讯作者:
P. Harris
An evaluation of three evapotranspiration models to determine water fluxes over hillslopes encroached by invasive alien plants in Eastern Cape Province, South Africa
对三个蒸散模型的评估,以确定南非东开普省被外来入侵植物侵占的山坡上的水通量
- DOI:
- 发表时间:
2024-09-14 - 期刊:
- 影响因子:0
- 作者:
A. Palmer;C. Weideman;Heidi;Perushan Rajah;T. Mar;ure;ure;C. Mapiye;Lianhai Wu;Onalenna Gwate;J. Bennett - 通讯作者:
J. Bennett
Climate change impacts on the livestock sector: AC0307
气候变化对畜牧业的影响:AC0307
- DOI:
- 发表时间:
2009 - 期刊:
- 影响因子:0
- 作者:
D. Moran;K. Topp;E. Wall;A. Wreford;D. Chadwick;M. R. Hutchings;M. Mitchell;D. Prado;B. Tolkamp;Lianhai Wu;R. Davidson;C. Dwyer;M. Haskell;D. McCracken;V. Sandilands;A. Shepherd;N. Sparks - 通讯作者:
N. Sparks
Multi-model simulation of soil temperature, soil water content and biomass in Euro-Mediterranean grasslands: Uncertainties and ensemble performance
欧洲-地中海草原土壤温度、土壤含水量和生物量的多模型模拟:不确定性和集合性能
- DOI:
10.1016/j.eja.2016.06.006 - 发表时间:
2017-08-01 - 期刊:
- 影响因子:5.2
- 作者:
R. Sándor;Z. Barcza;M. Acutis;L. Doro;D. Hidy;M. Köchy;J. Minet;E. Lellei;Simon Ma;A. Perego;S. Rolinski;F. Ruget;M. Sanna;G. Seddaiu;Lianhai Wu;G. Bellocchi - 通讯作者:
G. Bellocchi
Impact of transition from permanent pasture to new swards on the nitrogen use efficiency, nitrogen and carbon budgets of beef and sheep production
从永久牧场过渡到新牧场对牛羊生产氮利用效率、氮和碳预算的影响
- DOI:
10.1016/j.agee.2019.106572 - 发表时间:
2019-11-01 - 期刊:
- 影响因子:0
- 作者:
Alison Carswell;Kate Gongadze;Thomas H. Misselbrook;Lianhai Wu - 通讯作者:
Lianhai Wu
Lianhai Wu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Lianhai Wu', 18)}}的其他基金
MIDST-CZ: Maximising Impact by Decision Support Tools for sustainable soil and water through UK-China Critical Zone science
MIDST-CZ:通过中英关键区域科学,最大限度地发挥可持续土壤和水决策支持工具的影响
- 批准号:
NE/S009094/1 - 财政年份:2019
- 资助金额:
$ 51.22万 - 项目类别:
Research Grant
Soil processes and ecological services in the karst critical zone of Southwest China
西南岩溶关键带土壤过程与生态服务
- 批准号:
NE/N007557/1 - 财政年份:2016
- 资助金额:
$ 51.22万 - 项目类别:
Research Grant
相似国自然基金
基于辐射制冷的个人热管理材料研究与人体热舒适评价
- 批准号:52372088
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
面向实时视频分析的端云协作无服务器计算资源管理方法研究
- 批准号:62302292
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
数据驱动下基于行为的服务型制造运作管理
- 批准号:72331003
- 批准年份:2023
- 资助金额:165 万元
- 项目类别:重点项目
基于多步区间预测的多微电网能量管理分布鲁棒优化研究
- 批准号:72301287
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
战略与管理研究类:农业水资源高效利用与智慧管控发展战略研究
- 批准号:52342904
- 批准年份:2023
- 资助金额:10 万元
- 项目类别:专项基金项目
相似海外基金
Managing the Uncertainty of Genetic Information in Neonates
管理新生儿遗传信息的不确定性
- 批准号:
10721451 - 财政年份:2023
- 资助金额:
$ 51.22万 - 项目类别:
Design, Development, and Validation of an AI-enabled Legal Planning and Financial Management Training Solution for ADRD Caregivers
为 ADRD 护理人员设计、开发和验证人工智能支持的法律规划和财务管理培训解决方案
- 批准号:
10703504 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别:
Strengthening Research Administration and Management for Critical HIV Research in Kenya (STRAM-CHR)
加强肯尼亚关键艾滋病毒研究的研究行政和管理 (STRAM-CHR)
- 批准号:
10472812 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别:
Strengthening Research Administration and Management for Critical HIV Research in Kenya (STRAM-CHR)
加强肯尼亚关键艾滋病毒研究的研究行政和管理 (STRAM-CHR)
- 批准号:
10612466 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别:
Design, Development, and Validation of an AI-enabled Legal Planning and Financial Management Training Solution for ADRD Caregivers
为 ADRD 护理人员设计、开发和验证人工智能支持的法律规划和财务管理培训解决方案
- 批准号:
10703504 - 财政年份:2022
- 资助金额:
$ 51.22万 - 项目类别: