NSFGEO-NERC: Tsunamis from large volume eruptions
NSFGEO-NERC:大规模喷发引发海啸
基本信息
- 批准号:NE/S003509/1
- 负责人:
- 金额:$ 37.38万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2018
- 资助国家:英国
- 起止时间:2018 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
The greatest loss of life from any historic volcanic eruption-generated tsunami was in 1883 when the Krakatau volcano in Indonesia erupted. During this large-volume, caldera-forming event, multiple, volcanically-triggered tsunamis were generated which, on striking the adjacent coasts of Java and Sumatra, killed approximately 33,000 people. The proposed tsunami generation mechanisms include pyroclastic density flows produced from collapsing eruption columns, explosions, caldera collapse and a lateral blast. Yet, despite numerous published papers on the relative contributions to the tsunami from these mechanisms, they are still not clearly identified or defined, and have been a source of speculation and controversy for over 130 years. In this multi-disciplinary study, the research on the Krakatau will improve our understanding of tsunamis generated by volcanic eruptions, especially those from large-volume, caldera-forming events which, because of their proximity to the sea, have the potential to generate devastating tsunamis. As a large-volume, caldera-forming event Krakatau is representative of other, similar examples, such as Santorini (southern Aegean) in 3500 BP and Kikai (Japan) in 7500 BP. Like these older, prehistoric events, the Krakatau eruption includes diverse tsunami generating mechanisms including pyroclastic density current (PDC) discharges into the sea, caldera collapse, and explosions. One of the critical aspects of Krakatau, which single it out as the best event to study is the post event survey carried out immediately after the eruption by Verbeek, which describes the eruption and the impact of the eruption and tsunami. These descriptions provide validation of the new numerical tsunami modelling, which is not available from any other analogous event. The broader background to the research is that new understandings of tsunami generation from other mechanisms, such as earthquakes, landslides, and volcanic collapse, has largely resulted from recent devastating events, such as Papua New Guinea, 1998, the Indian Ocean, 2004, and Japan, 2011. These events have caused over 300,000 fatalities and US$30 billion of damage. Due to the lack of a major recent event, eruption generated tsunamis remain largely unresearched. This multidisciplinary project therefore, will address a major knowledge gap in non-seismic mechanisms of tsunami generation - tsunamis from volcanic eruptions. Defining eruption mechanisms and their relative contributions in tsunami generation is essential to the development of robust numerical tsunami models. The first challenge, therefore is to identify the most likely tsunami mechanisms. Although, there is uncertainty over these mechanisms, the most likely are caldera collapse and the entry into the sea of pyroclastic density currents (PDCs). To identify the mechanisms that underpin the tsunami models there are number of additional challenges. The volcanic PDC deposits and the caldera collapse will be mapped out during a marine survey around Krakatau Island. There will be new numerical modelling of how pyroclastic density currents enter the sea and new numerical models of tsunami generation from pyroclastic density flows and caldera collapse. The numerical tsunami models will be validated by field work to research sediments deposited as the tsunami flooded the coast.
任何历史悠久的火山喷发产生的海啸最大的生命损失是在1883年印度尼西亚的克拉卡陶火山爆发。在这一大批量的火山口形成事件中,产生了多个火山触发的海啸,在袭击爪哇和苏门答腊的邻近海岸时,大约杀死了约33,000人。拟议的海啸生成机制包括由崩溃的喷发柱,爆炸,火山口倒塌和侧向爆炸产生的火山碎屑密度流。然而,尽管这些机制对海啸的相对贡献发表了许多发表的论文,但它们仍未被清楚地识别或定义,并且在130多年中一直是投机和争议的根源。在这项多学科的研究中,对Krakatau的研究将提高我们对火山喷发产生的海啸的理解,尤其是来自大批量的Caldera形成事件的海啸,由于它们靠近海洋,因此具有产生毁灭性海啸的潜力。作为一大容量的小火山口形式事件Krakatau代表了其他类似的例子,例如3500 bp的Santorini(南部Aegean)和7500 bp的Kikai(日本)。像这些较旧的史前事件一样,Krakatau喷发包括各种海啸生成机制,包括火山塑料密度电流(PDC)排入海洋,火山口倒塌和爆炸。 Krakatau的关键方面之一是将其作为研究的最佳事件是在Verbeek爆发后立即进行的事件调查,该调查描述了喷发和喷发和海啸的影响。这些描述提供了新的数值海啸建模的验证,从任何其他类似事件中都无法获得。这项研究的更广泛的背景是,从其他机制(例如地震,滑坡和火山崩溃)中对海啸产生的新理解主要是由于最近发生的毁灭性事件所带来的,例如巴布亚新几内亚,1998年,1998年,印度洋,2004年,2004年和日本,2011年,这些事件造成了300,000次致命损坏,造成了30万美元的损坏,损坏了30亿美元。由于最近没有发生重大事件,因此产生海啸的喷发在很大程度上没有研究。因此,这个多学科项目将解决海啸产生的非视质机制 - 火山喷发的海啸的主要知识差距。定义喷发机制及其在海啸生成中的相对贡献对于强大数值海啸模型的发展至关重要。因此,第一个挑战是确定最可能的海啸机制。尽管这些机制存在不确定性,但最有可能是火山口塌陷和进入火山碎屑密度电流(PDC)的海洋。为了确定支撑海啸模型的机制,还有许多其他挑战。在Krakatau岛附近的海洋调查中,将将火山PDC的矿床和火山口倒塌绘制。将有新的数值建模,即如何从火山碎屑密度流和火山口塌陷中产生海啸的新数值模型。数值海啸模型将通过现场工作来验证,以研究在海啸淹没海岸时沉积的沉积物。
项目成果
期刊论文数量(9)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The importance of geologists and geology in tsunami science and tsunami hazard
- DOI:10.1144/sp456.11
- 发表时间:2017-06
- 期刊:
- 影响因子:0
- 作者:D. Tappin
- 通讯作者:D. Tappin
Modeling of the Dec. 22nd 2018 Anak Krakatau volcano lateral collapse and tsunami based on recent field surveys: Comparison with observed tsunami impact
- DOI:10.1016/j.margeo.2021.106566
- 发表时间:2021-10
- 期刊:
- 影响因子:2.9
- 作者:S. Grilli;Cheng Zhang;J. Kirby;A. Grilli;D. Tappin;S. Watt;J. Hunt;A. Novellino;S. Engwell;Muhammad Edo Marshal Nurshal;M. Abdurrachman;M. Cassidy;A. Madden-nadeau;S. Day
- 通讯作者:S. Grilli;Cheng Zhang;J. Kirby;A. Grilli;D. Tappin;S. Watt;J. Hunt;A. Novellino;S. Engwell;Muhammad Edo Marshal Nurshal;M. Abdurrachman;M. Cassidy;A. Madden-nadeau;S. Day
Downward-propagating eruption following vent unloading implies no direct magmatic trigger for the 2018 lateral collapse of Anak Krakatau
- DOI:10.1016/j.epsl.2021.117332
- 发表时间:2021-12
- 期刊:
- 影响因子:5.3
- 作者:K. Cutler;S. Watt;M. Cassidy;A. Madden-nadeau;S. Engwell;M. Abdurrachman;Muhammad Edo Marshal Nurshal;D. Tappin;S. Carey;A. Novellino;C. Hayer;J. Hunt;S. Day;S. Grilli;I. A. Kurniawan;N. Kartadinata
- 通讯作者:K. Cutler;S. Watt;M. Cassidy;A. Madden-nadeau;S. Engwell;M. Abdurrachman;Muhammad Edo Marshal Nurshal;D. Tappin;S. Carey;A. Novellino;C. Hayer;J. Hunt;S. Day;S. Grilli;I. A. Kurniawan;N. Kartadinata
Mapping Recent Shoreline Changes Spanning the Lateral Collapse of Anak Krakatau Volcano, Indonesia
- DOI:10.3390/app10020536
- 发表时间:2020-01-01
- 期刊:
- 影响因子:2.7
- 作者:Novellino, Alessandro;Engwell, Samantha L.;Hunt, James
- 通讯作者:Hunt, James
The magmatic and eruptive evolution of the 1883 caldera-forming eruption of Krakatau: Integrating field- to crystal-scale observations
1883 年喀拉喀托火山喷发的岩浆和喷发演化:整合现场到晶体尺度的观测
- DOI:10.1016/j.jvolgeores.2021.107176
- 发表时间:2021
- 期刊:
- 影响因子:2.9
- 作者:Madden-Nadeau A
- 通讯作者:Madden-Nadeau A
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
David Tappin其他文献
Levelling up health in the early years: A cost-analysis of infant feeding and healthcare
提高早期健康水平:婴儿喂养和医疗保健的成本分析
- DOI:
- 发表时间:
2024 - 期刊:
- 影响因子:3.7
- 作者:
O. Ajetunmobi;Emma McIntosh;Diane Stockton;David Tappin;Bruce Whyte - 通讯作者:
Bruce Whyte
Substance Abuse Treatment, Prevention, and Policy Comparison of Co Breath Testing and Women's Self-reporting of Smoking Behaviour for Identifying Smoking during Pregnancy
药物滥用治疗、预防和政策比较,通过呼吸测试和女性自我报告吸烟行为来识别怀孕期间吸烟
- DOI:
- 发表时间:
- 期刊:
- 影响因子:0
- 作者:
Zara C Usmani;Pauline Craig;Deborah Shipton;David Tappin;Uk;Deborah - 通讯作者:
Deborah
Prevalence of smoking in early pregnancy by census area: measured by anonymous cotinine testing of residual antenatal blood samples.
按人口普查地区划分的妊娠早期吸烟率:通过对残留产前血液样本进行匿名可替宁检测来测量。
- DOI:
- 发表时间:
1996 - 期刊:
- 影响因子:0
- 作者:
David Tappin;R. Ford;K. P. Nelson;C. Wild - 通讯作者:
C. Wild
David Tappin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('David Tappin', 18)}}的其他基金
Urgency Response to the 15 January 2022 Hunga Tonga - Hunga Ha'apai Volcanic Eruption -understanding the Volcanic Mechanism and Impact of the tsunami
对 2022 年 1 月 15 日汤加洪加哈派火山喷发的紧急响应 - 了解火山机制和海啸影响
- 批准号:
NE/X002454/1 - 财政年份:2022
- 资助金额:
$ 37.38万 - 项目类别:
Research Grant
Submarine landslide tsunamis, mechanisms of granular flows at multiple scales; a new UK/China multidisciplinary research collaboration
海底滑坡海啸、多尺度颗粒流机制;
- 批准号:
NE/W004593/1 - 财政年份:2021
- 资助金额:
$ 37.38万 - 项目类别:
Research Grant
NERC Urgency Sulawesi tsunami 2018
NERC 紧急 2018 年苏拉威西海啸
- 批准号:
NE/S015930/1 - 财政年份:2018
- 资助金额:
$ 37.38万 - 项目类别:
Research Grant
Will climate change in the Arctic increase the landslide-tsunami risk to the UK
北极气候变化是否会增加英国发生山体滑坡和海啸的风险
- 批准号:
NE/K000152/1 - 财政年份:2012
- 资助金额:
$ 37.38万 - 项目类别:
Research Grant
相似海外基金
NSFGEO-NERC: Imaging the magma storage region and hydrothermal system of an active arc volcano
NSFGEO-NERC:对活弧火山的岩浆储存区域和热液系统进行成像
- 批准号:
NE/X000656/1 - 财政年份:2025
- 资助金额:
$ 37.38万 - 项目类别:
Research Grant
NSFDEB-NERC: Spatial and temporal tradeoffs in CO2 and CH4 emissions in tropical wetlands
NSFDEB-NERC:热带湿地二氧化碳和甲烷排放的时空权衡
- 批准号:
NE/Z000246/1 - 财政年份:2025
- 资助金额:
$ 37.38万 - 项目类别:
Research Grant
NSFGEO-NERC: Magnetotelluric imaging and geodynamical/geochemical investigations of plume-ridge interaction in the Galapagos
NSFGEO-NERC:加拉帕戈斯群岛羽流-山脊相互作用的大地电磁成像和地球动力学/地球化学研究
- 批准号:
NE/Z000254/1 - 财政年份:2025
- 资助金额:
$ 37.38万 - 项目类别:
Research Grant
Collaborative Research: NSFDEB-NERC: Warming's silver lining? Thermal compensation at multiple levels of organization may promote stream ecosystem stability in response to drought
合作研究:NSFDEB-NERC:变暖的一线希望?
- 批准号:
2312706 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Standard Grant
Collaborative Research: NSFGEO/NERC: After the cataclysm: cryptic degassing and delayed recovery in the wake of Large Igneous Province volcanism
合作研究:NSFGEO/NERC:灾难之后:大型火成岩省火山活动后的神秘脱气和延迟恢复
- 批准号:
2317936 - 财政年份:2024
- 资助金额:
$ 37.38万 - 项目类别:
Continuing Grant