Advanced computing architecture to support the estimation and reporting of UK GHG emissions
先进的计算架构支持英国温室气体排放的估算和报告
基本信息
- 批准号:NE/L013088/1
- 负责人:
- 金额:$ 10.39万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2013
- 资助国家:英国
- 起止时间:2013 至 无数据
- 项目状态:已结题
- 来源:
- 关键词:
项目摘要
Greenhouse gas (GHG) emissions can be inferred from measurements of their atmospheric concentration using computationally demanding Bayesian "inverse" methods. This information is being used by research groups at the University of Bristol (UoB) and the University of Edinburgh (UoE) to a) quantify the magnitude and uncertainty of emissions from the UK and other countries, and b) determine the drivers of natural atmospheric GHG variability. This work is underpins several major projects including: a) the Department for Energy and Climate Change (DECC) monitoring network, responsible for reporting UK GHG emissions to the United Nations Framework Convention on Climate Change, b) the £3m NERC-funded Greenhouse gAs Uk and Global Emissions (GAUGE) consortium (Palmer is PI, Rigby is co-I), c) the NASA and DECC-funded Advanced Global Atmospheric Gases Experiment (Rigby is member), and d) the National Centre for Earth Observation. This work involves two stages. Firstly, chemical transport models (CTMs; e.g. the UK Met Office NAME model) are run on multi-node clusters, before their output is compared to observations for emissions verification using (usually) single-node data analysis systems. The statistical techniques for the latter involve the use of CPU- and memory-intensive linear algebra algorithms on extremely large arrays, which are already pushing the limits of our existing infrastructure. Activities within the DECC network and GAUGE now pose further challenges: 1) to fully exploit a rapidly growing quantity of heterogeneous measurement data (many millions of data points); 2) to use these data to infer emissions at higher resolution than ever before (e.g. making use of NAME model output at a horizontal resolution of 1.5 km over the UK). The proposed assets will help to strengthen our ability to carry out this second stage of this work.
可以使用计算要求的贝叶斯“反相反”方法来从其大气浓度的测量中推断出温室气体(GHG)的排放。布里斯托尔大学(UOB)和爱丁堡大学(UOE)的研究小组使用此信息来量化英国和其他国家的排放的大小和不确定性,b)确定自然大气变异性的驱动因素。 This work is underpins Several major projects including: a) the Department for Energy and Climate Change (DECC) monitoring network, responsible for reporting UK GHG emissions to the United Nations Framework Convention on Climate Change, b) the £3m NERC-funded Greenhouse gAs Uk and Global Emissions (GAUGE) consortium (Palmer is PI, Rigby is co-I), c) the NASA and DECC-funded Advanced Global Atmospheric Gases Experiment (Rigby is成员)和d)国家地球观察中心。这项工作涉及两个阶段。首先,在将其输出与使用(通常)单节点数据分析系统进行排放验证的观察结果之前,将化学传输模型(CTMS;后者的统计技术涉及在极大的数组上使用CPU和内存密集的线性代数算法,这已经在推动了我们现有基础架构的限制。现在,DECC网络和量规内的活动提出了进一步的挑战:1)充分探索迅速增长的异质测量数据(数百万个数据点); 2)使用这些数据以比以往任何时候都更高的分辨率来推断排放(例如,以1.5 km的水平分辨率在英国使用名称模型输出)。拟议的资产将有助于加强我们执行这项工作第二阶段的能力。
项目成果
期刊论文数量(10)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Marine Nitrous Oxide Emissions From Three Eastern Boundary Upwelling Systems Inferred From Atmospheric Observations
- DOI:10.1029/2020gl087822
- 发表时间:2020-07
- 期刊:
- 影响因子:5.2
- 作者:A. Ganesan;M. Manizza;E. Morgan;C. Harth;E. Kozlova;T. Lueker;A. Manning;M. Lunt;Jens Mühle-Jens-Mühl
- 通讯作者:A. Ganesan;M. Manizza;E. Morgan;C. Harth;E. Kozlova;T. Lueker;A. Manning;M. Lunt;Jens Mühle-Jens-Mühl
Rapid increase in dichloromethane emissions from China inferred through atmospheric observations.
- DOI:10.1038/s41467-021-27592-y
- 发表时间:2021-12-14
- 期刊:
- 影响因子:16.6
- 作者:An M;Western LM;Say D;Chen L;Claxton T;Ganesan AL;Hossaini R;Krummel PB;Manning AJ;Mühle J;O'Doherty S;Prinn RG;Weiss RF;Young D;Hu J;Yao B;Rigby M
- 通讯作者:Rigby M
Atmospheric observations consistent with reported decline in the UK's methane emissions, 2013-2020
大气观测结果与 2013 年至 2020 年英国甲烷排放量下降情况一致
- DOI:10.5194/acp-2021-548
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Lunt M
- 通讯作者:Lunt M
A machine learning emulator for Lagrangian particle dispersion model footprints: a case study using NAME
用于拉格朗日粒子分散模型足迹的机器学习模拟器:使用 NAME 的案例研究
- DOI:10.5194/egusphere-2022-1174
- 发表时间:2022
- 期刊:
- 影响因子:0
- 作者:Fillola E
- 通讯作者:Fillola E
Characterization of uncertainties in atmospheric trace gas inversions using hierarchical Bayesian methods
- DOI:10.5194/acp-14-3855-2014
- 发表时间:2014-01-01
- 期刊:
- 影响因子:6.3
- 作者:Ganesan, A. L.;Rigby, M.;Weiss, R. F.
- 通讯作者:Weiss, R. F.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew Rigby其他文献
Building an artificial neural network with neurons
用神经元构建人工神经网络
- DOI:
10.1063/1.5086873 - 发表时间:
2019 - 期刊:
- 影响因子:1.6
- 作者:
Matthew Rigby;Madeleine Anthonisen;Xue Ying Chua;A. Kaplan;Alyson E. Fournier;Peter H. Grutter - 通讯作者:
Peter H. Grutter
Perfluorocyclobutane (PFC-318, c-C4F8) in the global atmosphere
全球大气中的全氟环丁烷(PFC-318,c-C4F8)
- DOI:
10.5194/acp-19-10335-2019 - 发表时间:
2019-04 - 期刊:
- 影响因子:0
- 作者:
Jens Mühle;Cathy M. Trudinger;Matthew Rigby;Luke M. Western;Martin K. Vollmer;Sunyoung Park;Alistair J. Manning;Dan Say;Anita L. Ganesan;Paul Steele;Diane J. Ivy;Tim Arnold;Shanlan Li;Andreas Stohl;Chris M. Harth;Peter K. Salameh;Archie McCulloch;Simon O’ - 通讯作者:
Simon O’
Rewiring Neuronal Circuits: A New Method for Fast Neurite Extension and Functional Neuronal Connection.
重新布线神经元电路:一种快速神经突延伸和功能性神经元连接的新方法。
- DOI:
- 发表时间:
2017 - 期刊:
- 影响因子:0
- 作者:
M. H. Magdesian;M. H. Magdesian;Madeleine Anthonisen;G. M. Lopez;Xue Ying Chua;Matthew Rigby;Peter H. Grutter - 通讯作者:
Peter H. Grutter
Update on Ozone-Depleting Substances (ODSs) and Other Gases of Interest to the Montreal Protocol, Chapter 1 in Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project-Report No.55, 416 pp., World Meteorological Organiz | NIST
《蒙特利尔议定书》中消耗臭氧层物质 (ODS) 和其他相关气体的更新,臭氧消耗科学评估第 1 章:2014 年,全球臭氧研究和监测项目报告第 55 号,第 416 页,世界气象组织 |
- DOI:
- 发表时间:
2014 - 期刊:
- 影响因子:0
- 作者:
Lucy Carpenter;S. Reimann;A. Engel;S. Montzka;J. B. Burkholder;Cathy Clerbaux;B. Hall;Shari A. Yvon;D. R. Blake;M. Dorf;G. Dutton;P. Fraser;Lucien Froidevaux;François Hendrick;Jianxin Hu;Ashley Jones;P. Krummel;L. Kuijpers;M. Kurylo;Qing Liang;Emmanuel Mahieu;Jens M hle;S. O. Doherty;K. Ohnishi;V. L. Orkin;K. Pfeilsticker;Matthew Rigby;I. Simpson;Y. Yokouchi - 通讯作者:
Y. Yokouchi
Matthew Rigby的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew Rigby', 18)}}的其他基金
Investigating HALocarbon impacts on the global Environment (InHALE)
调查 HALocarbon 对全球环境的影响 (InHALE)
- 批准号:
NE/X00452X/1 - 财政年份:2022
- 资助金额:
$ 10.39万 - 项目类别:
Research Grant
COVID-19: Rapid detection of the impact of COVID-19 on UK greenhouse gas emissions
COVID-19:快速检测 COVID-19 对英国温室气体排放的影响
- 批准号:
NE/V00963X/1 - 财政年份:2020
- 资助金额:
$ 10.39万 - 项目类别:
Research Grant
OpenGHG: A community platform for greenhouse gas data science
OpenGHG:温室气体数据科学社区平台
- 批准号:
NE/V002996/1 - 财政年份:2020
- 资助金额:
$ 10.39万 - 项目类别:
Research Grant
Detection and Attribution of Regional greenhouse gas Emissions in the UK (DARE-UK)
英国区域温室气体排放的检测和归因(DARE-UK)
- 批准号:
NE/S004211/1 - 财政年份:2019
- 资助金额:
$ 10.39万 - 项目类别:
Research Grant
HUGS: a Hub for Uk Greenhouse gas data Science
HUGS:英国温室气体数据科学中心
- 批准号:
NE/S016155/1 - 财政年份:2019
- 资助金额:
$ 10.39万 - 项目类别:
Research Grant
Are national HFC emissions reports suitable for global policy negotiation?
国家氢氟碳化合物排放报告是否适合全球政策谈判?
- 批准号:
NE/M014851/1 - 财政年份:2015
- 资助金额:
$ 10.39万 - 项目类别:
Research Grant
Towards treaty verification of all non-CO2 long-lived greenhouse gases
对所有非二氧化碳长寿命温室气体进行条约核查
- 批准号:
NE/I021365/1 - 财政年份:2012
- 资助金额:
$ 10.39万 - 项目类别:
Fellowship
相似国自然基金
面向高性能计算的指令级自适应睿频加速芯片关键技术研究
- 批准号:62374100
- 批准年份:2023
- 资助金额:48 万元
- 项目类别:面上项目
基于天然序列库的天冬酰胺多肽连接酶计算进化及机理研究
- 批准号:32371324
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
超高性能混凝土(UHPC)加固损伤RC拱的协同承载机理与计算理论研究
- 批准号:52378154
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交媒体依赖行为习得与干预的认知神经计算机制研究
- 批准号:32300905
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
基于网络化计算的自组织组网方法研究
- 批准号:62371368
- 批准年份:2023
- 资助金额:49 万元
- 项目类别:面上项目
相似海外基金
Advanced Contingency Management System for Reduction of Alcohol Use.
用于减少饮酒的先进应急管理系统。
- 批准号:
10699864 - 财政年份:2023
- 资助金额:
$ 10.39万 - 项目类别:
Dissecting Functional Autoimmunity through High-Resolution Multiomics in a Vitiligo Center of Research Translation (V-CoRT)
白癜风研究转化中心 (V-CoRT) 通过高分辨率多组学剖析功能性自身免疫
- 批准号:
10404442 - 财政年份:2022
- 资助金额:
$ 10.39万 - 项目类别:
IMAT-ITCR Collaboration: Develop deep learning-based methods to identify subtypes of circulating tumor cells from optical microscope images
IMAT-ITCR 合作:开发基于深度学习的方法,从光学显微镜图像中识别循环肿瘤细胞的亚型
- 批准号:
10675886 - 财政年份:2022
- 资助金额:
$ 10.39万 - 项目类别:
The Ohio State University Vision Sciences Research Core Program (OSU-VSRCP)
俄亥俄州立大学视觉科学研究核心计划 (OSU-VSRCP)
- 批准号:
10707323 - 财政年份:2022
- 资助金额:
$ 10.39万 - 项目类别:
Dissecting Functional Autoimmunity through High-Resolution Multiomics in a Vitiligo Center of Research Translation (V-CoRT)
白癜风研究转化中心 (V-CoRT) 通过高分辨率多组学剖析功能性自身免疫
- 批准号:
10703370 - 财政年份:2022
- 资助金额:
$ 10.39万 - 项目类别: