An iPSC based xeno-free platform to assess the foreign body response against new biomaterials

基于 iPSC 的无异源平台,用于评估新生物材料的异物反应

基本信息

  • 批准号:
    NC/Y000838/1
  • 负责人:
  • 金额:
    $ 76.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2024
  • 资助国家:
    英国
  • 起止时间:
    2024 至 无数据
  • 项目状态:
    未结题

项目摘要

Implantable biomaterials and medical devices have become mainstream solutions for a variety of health problems and their use is constantly increasing. However, the materials used in these devices can be seen as foreign by the immune system triggering adverse immune reactions that could harm the patient and stop the device from working. These responses (generally known as foreign body response or FBR) are initiated by immune cells circulating in the blood (e.g. T cells and monocytes) and those that are resident (e.g. macrophages) in the tissues where the devices are implanted. Macrophages attack implants in an attempt to clear them from the body which leads to complications including inflammation and formation of dense tissues (fibrotic capsules) that surround the devices. Such complications are major causes of corrective surgeries costing the health system billions annually and causing significant suffering for millions of patients. There is therefore significant interest in investigating FBR for new biomaterials, unfortunately however, there is a heavy reliance on animal models in the biomaterials discovery pipeline with thousands of animals used in both academia and industry each year. In addition to ethical issues, these models are expensive, and have poor physiological relevance to human not least due to fundamental differences between the immune system in humans and the animals. Thus, there is an unmet need for developing better in vitro models to investigate FBR.To address this need we will build a stem cell based, microfluidic device that can model the FBR and be used to test new biomaterials for compatibility with implantation. We will achieve this via 4 interlinked tasks:Task 1: Development of Xeno-free hIPSC differentiation of immune and stromal cells. We have developed and validated an efficient, xeno-free stem cell differentiation platform to create all of the necessary cell types required for our model (endothelium, fibroblasts, macrophages and T-cells) in a single media and will finalise development of T-cells in our xeno-free system. Task 2: Optimising static co-cultures of different cell types and cell supply. Our differentiation platform is based on a single cell culture media for all cell types making coculture of the different cell types more simplified. We will mix different cell types together at ratios that reflect healthy human tissue and assess baseline levels of cell metabolism, proliferation, death and inflammatory profiles. Task 3: Microfluidic platform assembly and optimisation. We will build the microfluidic device containing compartments replicating vascular networks, stromal tissue and pumps simulating blood flow. We will further optimise long term cellular function of the device to achieve a functional life span of at least 2 weeks. Task 4: Validation of in the new platform using a selection of well characterised biomaterials. We will compare the performance of the new platform by investigating FBR to a selection of clinically relevant biomaterials where we have access to existing in vivo data from well established animal models. This will enable us to fine tune different aspects of the new device (cell numbers, rations, flow rates) to optimise the device performance if necessary. Together these objectives will deliver a stem cell based, microfluidic FBR model that will recapitulate the three-dimensionality of the target tissue and the dynamic events occurring in immune responses to implanted devices, including recruitment of circulating immune cells to the site of the implant, immune cell migration through blood vessels and connective tissues and their interactions with other cells in the local area. The model will not be reliant on primary cell types/donors and therefore reduce variability of the platform. Ultimately, this will allow more accurate biomaterial discovery while replacing the need to use tens of thousands of animals per year in biomaterial testing.
植入式生物材料和医疗器械已成为多种健康问题的主流解决方案,且其使用量不断增加。然而,这些设备中使用的材料可能会被免疫系统视为异物,从而引发不良免疫反应,从而伤害患者并阻止设备工作。这些反应(通常称为异物反应或 FBR)是由血液中循环的免疫细胞(例如 T 细胞和单核细胞)以及植入设备的组织中驻留的免疫细胞(例如巨噬细胞)发起的。巨噬细胞攻击植入物,试图将其从体内清除,这会导致并发症,包括炎症和装置周围致密组织(纤维化胶囊)的形成。这些并发症是矫正手术的主要原因,每年给卫生系统造成数十亿美元的损失,并给数百万患者带来巨大痛苦。因此,人们对研究新生物材料的 FBR 非常感兴趣,但不幸的是,在生物材料发现管道中严重依赖动物模型,每年学术界和工业界都使用数千只动物。除了伦理问题外,这些模型价格昂贵,并且与人类的生理相关性较差,尤其是由于人类和动物的免疫系统之间存在根本差异。因此,开发更好的体外模型来研究 FBR 的需求尚未得到满足。为了满足这一需求,我们将构建一种基于干细胞的微流体装置,可以模拟 FBR 并用于测试新生物材料与植入的兼容性。我们将通过 4 个相互关联的任务来实现这一目标: 任务 1:开发免疫细胞和基质细胞的无异种 hIPSC 分化。我们开发并验证了一个高效、无异源的干细胞分化平台,可在单一培养基中创建我们的模型所需的所有必需细胞类型(内皮细胞、成纤维细胞、巨噬细胞和 T 细胞),并将最终完成 T 细胞的开发在我们的无异源系统中。任务 2:优化不同细胞类型和细胞供应的静态共培养。我们的分化平台基于适用于所有细胞类型的单细胞培养基,使不同细胞类型的共培养更加简化。我们将以反映健康人体组织的比例将不同的细胞类型混合在一起,并评估细胞代谢、增殖、死亡和炎症特征的基线水平。任务 3:微流控平台组装和优化。我们将构建包含复制血管网络、基质组织和模拟血流的泵的微流体装置。我们将进一步优化设备的长期细胞功能,以实现至少 2 周的功能寿命。任务 4:使用精选的特征良好的生物材料在新平台中进行验证。我们将通过研究 FBR 与精选的临床相关生物材料来比较新平台的性能,在这些生物材料中我们可以从成熟的动物模型中获取现有的体内数据。这将使我们能够微调新设备的不同方面(细胞数量、定量、流速),以在必要时优化设备性能。这些目标共同将提供一个基于干细胞的微流体 FBR 模型,该模型将概括目标组织的三维性以及对植入设备的免疫反应中发生的动态事件,包括将循环免疫细胞募集到植入物部位、免疫细胞通过血管和结缔组织的迁移及其与局部区域其他细胞的相互作用。该模型将不依赖于原代细胞类型/供体,因此减少了平台的可变性。最终,这将允许更准确的生物材料发现,同时取代每年在生物材料测试中使用数万只动物的需要。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Amir Ghaemmaghami其他文献

Investigating the intracellular effects of hyperbranched polycation–DNA complexes on lung cancer cells using LC-MS-based metabolite profiling
  • DOI:
    10.1039/c8mo00139a
  • 发表时间:
    2019-02
  • 期刊:
  • 影响因子:
    2.9
  • 作者:
    Ali Alazzo;Mohammad Ahmad Al-Natour;Keith Spriggs;Snjezana Stolnik;Amir Ghaemmaghami;Dong-Hyun Kim;Cameron Alexander
  • 通讯作者:
    Cameron Alexander
Optimization of diffuse Raman spectroscopy for in-vivo quantification of foreign body response in a small animal model
用于小动物模型中异物反应体内定量的漫射拉曼光谱优化
  • DOI:
  • 发表时间:
    2023
  • 期刊:
  • 影响因子:
    3.4
  • 作者:
    Max Dooley;Jeni Luckett;Morgan Alexander;Pavel Matousek;Hamid Dehghani;Amir Ghaemmaghami;I. Notingher
  • 通讯作者:
    I. Notingher
Unlocking Bio-Instructive Polymers: A Novel Multi-Well Screening Platform Based on Secretome Sampling
解锁生物指导聚合物:基于分泌组采样的新型多孔筛选平台
  • DOI:
    10.21769/bioprotoc.4939
  • 发表时间:
    2024-02-20
  • 期刊:
  • 影响因子:
    0.8
  • 作者:
    Shirin Fateh;Reem Alromaihi;Amir Ghaemmaghami;Morgan Ale;er;er
  • 通讯作者:
    er
Inflammatory Network of Liver Fibrosis and How It Can Be Targeted Therapeutically
肝纤维化的炎症网络以及如何靶向治疗
  • DOI:
    10.3390/immuno3040023
  • 发表时间:
    2023-11-28
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Kirstin O. Lowe;Constantin E. Tanase;Susan Maghami;Leanne E. Fisher;Amir Ghaemmaghami
  • 通讯作者:
    Amir Ghaemmaghami

Amir Ghaemmaghami的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Amir Ghaemmaghami', 18)}}的其他基金

Using microscale technologies in tissue engineering of human lung
在人肺组织工程中使用微型技术
  • 批准号:
    BB/I02643X/1
  • 财政年份:
    2011
  • 资助金额:
    $ 76.31万
  • 项目类别:
    Research Grant
Construction of an immuno-competent and self reporting human lung model using nanosensor incorporated scaffolds
使用纳米传感器结合支架构建免疫活性和自我报告的人肺模型
  • 批准号:
    BB/H011293/1
  • 财政年份:
    2010
  • 资助金额:
    $ 76.31万
  • 项目类别:
    Research Grant
Construction of an in vitro lymphoid organoid: studying innate-adaptive immune cell interaction in a 3D culture system
体外淋巴类器官的构建:研究 3D 培养系统中的先天适应性免疫细胞相互作用
  • 批准号:
    BB/F001142/1
  • 财政年份:
    2007
  • 资助金额:
    $ 76.31万
  • 项目类别:
    Research Grant

相似国自然基金

基于异种金属负载共价有机框架硫正极材料的构筑及其限域-催化协同增效机理研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    53 万元
  • 项目类别:
    面上项目
基于异种溶质原子交互作用和相界面结构的镁合金导热行为
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目
基于柱芳烃/共价有机框架纳米复合材料和“肽-DNA"异种适配体的诺如病毒电化学传感器研究
  • 批准号:
    32160597
  • 批准年份:
    2021
  • 资助金额:
    35 万元
  • 项目类别:
    地区科学基金项目
基于异种细胞系移植的“杂交组织”形成过程中的生物学机制研究
  • 批准号:
  • 批准年份:
    2020
  • 资助金额:
    24 万元
  • 项目类别:
    青年科学基金项目
基于相场法的钛/铝异种合金搅拌摩擦点焊接头脆性相演变机理研究
  • 批准号:
    51905143
  • 批准年份:
    2019
  • 资助金额:
    25.0 万元
  • 项目类别:
    青年科学基金项目

相似海外基金

Optimal utility-based design of oncology clinical development programmes
基于效用的肿瘤学临床开发项目的优化设计
  • 批准号:
    2734768
  • 财政年份:
    2026
  • 资助金额:
    $ 76.31万
  • 项目类别:
    Studentship
Impact of Urban Environmental Factors on Momentary Subjective Wellbeing (SWB) using Smartphone-Based Experience Sampling Methods
使用基于智能手机的体验采样方法研究城市环境因素对瞬时主观幸福感 (SWB) 的影响
  • 批准号:
    2750689
  • 财政年份:
    2025
  • 资助金额:
    $ 76.31万
  • 项目类别:
    Studentship
Bio-MATSUPER: Development of high-performance supercapacitors based on bio-based carbon materials
Bio-MATSUPER:开发基于生物基碳材料的高性能超级电容器
  • 批准号:
    EP/Z001013/1
  • 财政年份:
    2025
  • 资助金额:
    $ 76.31万
  • 项目类别:
    Fellowship
Plasmonic Mg-based catalysts for low temperature sunlight-assisted CO2 activation (MgCatCO2Act)
用于低温阳光辅助 CO2 活化的等离子体镁基催化剂 (MgCatCO2Act)
  • 批准号:
    EP/Y037294/1
  • 财政年份:
    2025
  • 资助金额:
    $ 76.31万
  • 项目类别:
    Research Grant
機械学習のアプローチによるPatient-based Real-time Quality Controlの開発
使用机器学习方法开发基于患者的实时质量控制
  • 批准号:
    24K10577
  • 财政年份:
    2024
  • 资助金额:
    $ 76.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了