ICF: Using Explainable Artificial Intelligence to predict future stroke using routine historical investigations
ICF:使用可解释的人工智能通过常规历史调查来预测未来中风
基本信息
- 批准号:MR/Y503472/1
- 负责人:
- 金额:$ 31.71万
- 依托单位:
- 依托单位国家:英国
- 项目类别:Research Grant
- 财政年份:2024
- 资助国家:英国
- 起止时间:2024 至 无数据
- 项目状态:未结题
- 来源:
- 关键词:
项目摘要
There are more than 100,000 strokes in the UK each year causing 38,000 deaths, making it a leading cause of death and disability (NICE 2019). Ninety five percent of those who had a stroke had at least one untreated risk factor for it and 13.7% of these strokes were preventable. Findings that are predictive of future stroke are often identifiable on brain scans, electrocardiograms (ECG), heart scans (Echocardiogram or 'echo') and laboratory tests undertaken taken to investigate other medical problems. Often these signs are not picked up, which means evidence based treatments to reduce the risk of future stroke are not given. This is because of a lack of a dedicated system to do so. The first five years of care post stroke cost £3.60 billion (mean per patient cost: £46,039). Hence as well as improving many lives, a cost effective and accurate system to identify those at high risk of future stroke them will deliver major cost savings.Using 10,000 stroke cases seen at University Hospitals Plymouth NHS Trust (UHPNT) and with the close support of the Sentinel Stroke National Audit Programme (SSNAP - a national audit where all UK stroke cases are recorded), we hope to build a database of laboratory results, Magnetic resonance imaging (MRI) and computer tomography (CT) brain scans, ambulatory ECGs (ECGs which are worn for 24hr+) and echocardiograms, collected in those who later developed and did not develop a stroke. We shall use this data to train an artificial intelligence computer programme (model) which can predict who will later develop strokes based on patterns within the data collected. We believe that this approach will not only identify known risk factors for stroke, but may identify new patterns/features in one or across a number of investigations to predict future stroke. We hope this model will be the first step to building an automated system (which interfaces directly to GPs) for determining stroke risk and implementing treatments and lifestyle modifications to reduce this risk.
每年英国有100,000多人中风,造成38,000人死亡,这使其成为死亡和残疾的主要原因(NICE 2019)。中风的人中有95%至少有一个未经治疗的危险因素,而这些中风中有13.7%是可以预防的。预测未来中风的发现通常可以在脑部扫描,心电图(ECG),心脏扫描(超声心动图或“回声”)和实验室测试中进行确定。通常不会捡起这些迹象,这意味着没有给出基于证据的治疗方法来减少未来中风的风险。这是因为缺乏专门的系统。前五年的护理后中风耗资3600亿英镑(平均每个患者费用:46,039英镑)。因此,除了改善许多生命之外(MRI)和计算机断层扫描(CT)脑部扫描,ABSURATORATOR ECGS(ECG(佩戴的24小时+)和超声心动图,后来又收集了后来发展并没有中风的人。我们将使用此数据来培训人工智能计算机程序(模型),该计划可以预测谁将根据收集的数据中的模式进行中风。我们认为,这种方法不仅可以识别中风的已知风险因素,而且可以在许多调查中或在许多调查中确定新的模式/特征来预测未来的中风。我们希望该模型将成为构建自动化系统(直接与GPS接口)来确定中风风险并实施治疗和生活方式修改以降低这种风险的第一步。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen Mullin其他文献
Phenotypic effect of GBA1 variants in individuals with and without Parkinson's disease: The RAPSODI study
GBA1 变异对帕金森病患者和非帕金森病患者的表型影响:RAPSODI 研究
- DOI:
10.1016/j.nbd.2023.106343 - 发表时间:
2023 - 期刊:
- 影响因子:6.1
- 作者:
M. Toffoli;Harneek Chohan;Stephen Mullin;Aaron Jesuthasan;Selen Yalkic;S. Koletsi;E. Menozzi;Soraya Rahall;Naomi Limbachiya;Nadine Loefflad;A. Higgins;Jonathan Bestwick;S. Lucas;Federico Fierli;A. Farbos;Roxana Mezabrovschi;Chiao Lee;A. Schrag;D. Moreno;Derralynn Hughes;Alastair J Noyce;K. Colclough;Aaron R. Jeffries;C. Proukakis;A. H. Schapira - 通讯作者:
A. H. Schapira
Web of the carotid artery: An under-recognized cause of ischemic stroke
- DOI:
10.1016/j.jocn.2018.01.059 - 发表时间:
2018-04-01 - 期刊:
- 影响因子:
- 作者:
Federico Pacei;Luca Quilici;Stephen Mullin;Alessandro Innocenti;Luca Valvassori;Raffaele Nardone;Luciano Bet - 通讯作者:
Luciano Bet
Whole genome sequencing for copy number variant detection to improve diagnosis and management of rare diseases.
用于拷贝数变异检测的全基因组测序,以改善罕见疾病的诊断和管理。
- DOI:
10.1111/dmcn.15985 - 发表时间:
2024 - 期刊:
- 影响因子:3.8
- 作者:
Pamela Bowman;Hannah Grimes;Anthony R. Dallosso;Ian R Berry;Stephen Mullin;Julia Rankin;Karen J Low - 通讯作者:
Karen J Low
Combined GCASE/ALPHA-synuclein pattern may identify specific prodomal PD patterns in GBA carriers: A cluster analysis study
- DOI:
10.1016/j.jns.2021.119455 - 发表时间:
2021-10-01 - 期刊:
- 影响因子:
- 作者:
Micol Avenali;Silvia Cerri;Chiara Cerami;Chiara Crespi;Matthew Gegg;Stephen Mullin;Marco Toffoli;Derralyn Hughes;Enza Valente;Cristina Tassorelli;Anthony Schapira;Fabio Blandini - 通讯作者:
Fabio Blandini
Stephen Mullin的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
使用单分子磁镊研究DNA纽结
- 批准号:12374216
- 批准年份:2023
- 资助金额:53 万元
- 项目类别:面上项目
开放空间内部特征对公共生活行为的复合影响效应与使用者感知机理研究
- 批准号:52308052
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
时空交互与社会化交互协同驱动的弱势道路使用者轨迹预测方法研究
- 批准号:52302501
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
使用三维辐射磁流体力学数值模拟研究太阳活动区日冕加热问题
- 批准号:12373054
- 批准年份:2023
- 资助金额:52 万元
- 项目类别:面上项目
同义密码子使用模式对BVDV NS5A介导IRES元件翻译调控的影响
- 批准号:32360874
- 批准年份:2023
- 资助金额:32 万元
- 项目类别:地区科学基金项目
相似海外基金
Real-time inversion using self-explainable deep learning driven by expert knowledge
使用由专家知识驱动的可自我解释的深度学习进行实时反演
- 批准号:
EP/Z000653/1 - 财政年份:2024
- 资助金额:
$ 31.71万 - 项目类别:
Research Grant
PFI–TT: Development of an Explainable and Robust Detector of Forged Multimedia and Cyber Threats using Artificial intelligence
PFI™TT:使用人工智能开发可解释且强大的伪造多媒体和网络威胁检测器
- 批准号:
2329858 - 财政年份:2023
- 资助金额:
$ 31.71万 - 项目类别:
Continuing Grant
A Study on Explainable Recommender Systems using Personal Network
使用个人网络的可解释推荐系统研究
- 批准号:
23H03504 - 财政年份:2023
- 资助金额:
$ 31.71万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Explainable Population Estimation Using Deep Learning from Satellite Imagery
使用卫星图像深度学习进行可解释的人口估计
- 批准号:
2890100 - 财政年份:2023
- 资助金额:
$ 31.71万 - 项目类别:
Studentship
Personalized Risk Stratification in Atrial Fibrillation using Portable, Explainable Artificial Intelligence
使用便携式、可解释的人工智能对心房颤动进行个性化风险分层
- 批准号:
10905154 - 财政年份:2023
- 资助金额:
$ 31.71万 - 项目类别: