Cellular-resolution in situ transcriptomics of the mouse brain and Alzheimer's disease models

小鼠大脑和阿尔茨海默病模型的细胞分辨率原位转录组学

基本信息

  • 批准号:
    MR/V003402/1
  • 负责人:
  • 金额:
    $ 110.16万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2021
  • 资助国家:
    英国
  • 起止时间:
    2021 至 无数据
  • 项目状态:
    未结题

项目摘要

The brain is composed of hundreds of subtly-different cell types, spread over hundreds of distinct regions. The sensory, motor, and cognitive functions the brain produces, arise from circuits distributed globally across these regions. To understand brain function, it is therefore essential to understand the global spatial organization of its component cell types. Similarly, to understand how cognition can falter in disease conditions, it is essential to understand how pathologies affect circuits across the whole brain.Alzheimer's disease is a devastating disorder of brain function, with a tremendous and still growing social and economic cost. Although much research has focused on a small set of regions (the hippocampus and entorhinal cortex), Alzheimer's disease affects the whole brain. For example, drugs targeting a small but very specific circuit, the basal forebrain cholinergic system, are amongst the few treatments approved for relief of Alzheimer's symptoms. Many other specific brain regions are likely to be involved also, but an understanding of the brain-wide pathology of the disease is currently lacking. Each brain region contains many finely-distinguished subtypes of neurons, as well as other cell types such as microglia, astrocytes, oligodendrocytes, and vascular cells, which all likely play a role in the disease aetiology. Precious little information is available on how these fine subtypes are involved in the disease. This project will employ a new technology, called in situ transcriptomics, to understand the global structure of the brain, and it is disrupted by the pathologies underlying Alzheimer's disease, using mouse models. This technology can localize the expression of many genes simultaneously, to sub-micrometer resolution, in samples of any tissue from any species. Because different cell types express different combinatorial patterns of genes, parallel measurement of a cell's gene expression profiles allows fine cell type classification. Furthermore, because changes in cellular function are almost always reflected in changes in gene expression, applying the technology to disease models will allow scientists to understand how the function of each cell type changes under pathological conditions.The technology is still under development, and is currently found in only a few labs worldwide. Our group at UCL are one of the developers of the technology. We have recently developed it to a point where it can localize up to 1000 genes simultaneously at high efficiency, and automated it so that it can run at high enough throughput to process an entire mouse brain. We propose here to apply this newly-established technology at scale, to produce an entire atlas of expression of 1000 carefully chosen genes, at submicron resolution, across the whole mouse brain. We will use this to spatially localize all the brain's cell types (building on work from a previous non-spatial transcriptomic technology). We will then apply the same methodology to two mouse lines, that model the two main types of pathology underlying Alzheimer's disease: the APPNL-G-F amyloid model, and the THY-Tau22 model. This will enable us to see how multiple types of neuron and non-neurons across all brain regions are affected by the amyloid and tau pathologies. All data will be made freely available, enabling scientists worldwide to use it to guide new experiments and hypotheses regarding the function of the healthy and diseased brain. This will provide foundational information, greatly accelerating progress towards understanding not only Alzheimers but also a wide range of other neurological and psychiatric disorders of cognition including for example schizophrenia, depression, bipolar disorder, frontotemporal dementia, Parkinson's disease, and Huntington's disease.
大脑由数百种略有不同的细胞类型组成,分布在数百个不同的区域。大脑产生的感觉、运动和认知功能来自分布在全球这些区域的电路。因此,为了了解大脑功能,有必要了解其组成细胞类型的整体空间组织。同样,要了解疾病条件下认知能力如何衰退,就必须了解病理如何影响整个大脑的回路。阿尔茨海默病是一种破坏性的大脑功能障碍,造成巨大且仍在不断增长的社会和经济成本。尽管许多研究都集中在一小部分区域(海马体和内嗅皮层),但阿尔茨海默病影响整个大脑。例如,针对一个小但非常特殊的回路(基底前脑胆碱能系统)的药物是少数被批准用于缓解阿尔茨海默病症状的治疗方法之一。许多其他特定的大脑区域也可能参与其中,但目前缺乏对该疾病的全脑病理学的了解。每个大脑区域都包含许多精细区分的神经元亚型,以及其他细胞类型,如小胶质细胞、星形胶质细胞、少突胶质细胞和血管细胞,这些细胞都可能在疾病病因学中发挥作用。关于这些精细亚型如何参与该疾病的宝贵信息很少。该项目将采用一种称为原位转录组学的新技术,利用小鼠模型来了解大脑的整体结构,并通过阿尔茨海默病的病理学来破坏大脑的整体结构。该技术可以在任何物种的任何组织样本中以亚微米分辨率同时定位许多基因的表达。由于不同的细胞类型表达不同的基因组合模式,因此并行测量细胞的基因表达谱可以对细胞类型进行精细分类。此外,由于细胞功能的变化几乎总是反映在基因表达的变化中,因此将该技术应用于疾病模型将使科学家能够了解每种细胞类型的功能在病理条件下如何变化。该技术仍在开发中,目前正在开发中全球仅有少数实验室发现。我们伦敦大学学院的团队是该技术的开发者之一。我们最近将其开发到可以同时高效定位多达 1000 个基因的程度,并实现自动化,使其能够以足够高的吞吐量运行来处理整个小鼠大脑。我们在此建议大规模应用这项新建立的技术,以亚微米分辨率在整个小鼠大脑中生成 1000 个精心挑选的基因的完整表达图谱。我们将用它来空间定位所有大脑细胞类型(建立在以前的非空间转录组技术的基础上)。然后,我们将相同的方法应用于两个小鼠品系,模拟阿尔茨海默病的两种主要病理类型:APPNL-G-F 淀粉样蛋白模型和 THY-Tau22 模型。这将使我们能够了解所有大脑区域的多种类型的神经元和非神经元如何受到淀粉样蛋白和 tau 蛋白病理学的影响。所有数据都将免费提供,使世界各地的科学家能够利用它来指导有关健康和患病大脑功能的新实验和假设。这将提供基础信息,大大加快了解阿尔茨海默病以及其他广泛的神经和精神认知障碍,包括精神分裂症、抑郁症、双相情感障碍、额颞叶痴呆、帕金森病和亨廷顿病。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kenneth Harris其他文献

Mouse frontal cortex nonlinearly encodes stimuli, choices, and outcomes
小鼠额叶皮层非线性编码刺激、选择和结果
  • DOI:
    10.12688/wellcomeopenres.19693.1
  • 发表时间:
    2023-10-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    Lauren E. Wool;Armin Lak;Matteo Car;ini;ini;Kenneth Harris
  • 通讯作者:
    Kenneth Harris
A spatially-resolved transcriptional atlas of the murine dorsal pons at single-cell resolution
单细胞分辨率的小鼠背侧脑桥的空间分辨转录图谱
  • DOI:
    10.1038/s41467-024-45907-7
  • 发表时间:
    2024-03-04
  • 期刊:
  • 影响因子:
    16.6
  • 作者:
    Stefano Nardone;Roberto De Luca;Antonino Zito;Nataliya Klymko;Dimitris Nicoloutsopoulos;Oren Amsalem;Cory Brannigan;Jon M. Resch;Christopher L. Jacobs;Deepti Pant;Molly L. Veregge;Harini Srinivasan;Ryan M. Grippo;Zongfang Yang;Mark L Zeidel;M. Andermann;Kenneth Harris;Linus T. Tsai;E. Arrigoni;Anne M J Verstegen;Clifford B Saper;B. Lowell
  • 通讯作者:
    B. Lowell
Retention following a Change in Ambient Contextual Stimuli for Six Age Groups.
六个年龄段的环境刺激变化后的记忆力。
  • DOI:
    10.1037/h0030957
  • 发表时间:
    1971-05-01
  • 期刊:
  • 影响因子:
    4
  • 作者:
    L. Jensen;Kenneth Harris;D. C. Anderson
  • 通讯作者:
    D. C. Anderson
Breast artery calcium noted on screening mammography is predictive of high risk coronary calcium in asymptomatic women: a case control study.
筛查乳房 X 光检查中发现的乳动脉钙可预测无症状女性的高风险冠状动脉钙:一项病例对照研究。
  • DOI:
    10.1024/0301-1526/a000312
  • 发表时间:
    2013-11-12
  • 期刊:
  • 影响因子:
    0
  • 作者:
    M. Matsumura;Crystal Maksimik;Matthew W. Martinez;Michael Weiss;James A Newcomb;Kenneth Harris;Michael A Rossi
  • 通讯作者:
    Michael A Rossi
Emerging principles of spacetime in brains: Meeting report on spatial neurodynamics
大脑中时空的新兴原理:空间神经动力学会议报告
  • DOI:
  • 发表时间:
    2022
  • 期刊:
  • 影响因子:
    16.2
  • 作者:
    S. Grün;Jennifer Li;Bruce L. McNaughton;C. Petersen;D. McCormick;D. Robson;G. Buzsáki;Kenneth Harris;T. Sejnowski;ThomasD . Mrsic;Henrik Lindén;P. Roland
  • 通讯作者:
    P. Roland

Kenneth Harris的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kenneth Harris', 18)}}的其他基金

Computations of transcriptomic neuron types in cortex
皮层转录组神经元类型的计算
  • 批准号:
    EP/Y028295/1
  • 财政年份:
    2024
  • 资助金额:
    $ 110.16万
  • 项目类别:
    Research Grant
Neuronal mechanisms of learning-evoked stimulus orthogonalization
学习诱发刺激正交化的神经机制
  • 批准号:
    BB/W015293/1
  • 财政年份:
    2022
  • 资助金额:
    $ 110.16万
  • 项目类别:
    Research Grant
iPROBE: in-vivo Platform for the Real-time Observation of Brain Extracellular activity
iPROBE:实时观察脑细胞外活动的体内平台
  • 批准号:
    EP/K015141/1
  • 财政年份:
    2013
  • 资助金额:
    $ 110.16万
  • 项目类别:
    Research Grant
The Neural Marketplace
神经市场
  • 批准号:
    EP/I005102/2
  • 财政年份:
    2012
  • 资助金额:
    $ 110.16万
  • 项目类别:
    Fellowship
The Neural Marketplace
神经市场
  • 批准号:
    EP/I005102/1
  • 财政年份:
    2010
  • 资助金额:
    $ 110.16万
  • 项目类别:
    Fellowship
Supporting and Nurturing Adventurous Chemistry Research in Cardiff
支持和培育卡迪夫的冒险化学研究
  • 批准号:
    EP/D056519/1
  • 财政年份:
    2006
  • 资助金额:
    $ 110.16万
  • 项目类别:
    Research Grant
Planning Workshop: Corpora for Computational Neuroscience
规划研讨会:计算神经科学语料库
  • 批准号:
    0636838
  • 财政年份:
    2006
  • 资助金额:
    $ 110.16万
  • 项目类别:
    Standard Grant
GRADUATE RESEARCH FELLOWSHIP PROGRAM
研究生研究奖学金计划
  • 批准号:
    9552577
  • 财政年份:
    1995
  • 资助金额:
    $ 110.16万
  • 项目类别:
    Fellowship Award

相似国自然基金

从定性到定量:基于自然解决方案的长江口湿地后生态工程评价
  • 批准号:
    32371621
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
计算机辅助的协作问题解决中情感-社交-认知建模分析与引导促进
  • 批准号:
    62377027
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
蛋白质降解决定因子的生物信息学筛选及其耐药突变的多组学分析研究
  • 批准号:
    32300528
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
基于超声单模态影像融合实时规划技术实现肝脏肿瘤热消融最优穿刺路径解决方案
  • 批准号:
    82371986
  • 批准年份:
    2023
  • 资助金额:
    48 万元
  • 项目类别:
    面上项目
基于MOFs材料解决钙钛矿太阳电池中铅泄漏问题的研究
  • 批准号:
  • 批准年份:
    2022
  • 资助金额:
    54 万元
  • 项目类别:
    面上项目

相似海外基金

High-dimensional single-cell mapping to define immune signatures of cytomegalovirus-associated rejection in cardiac transplantation
高维单细胞图谱定义心脏移植中巨细胞病毒相关排斥反应的免疫特征
  • 批准号:
    10816183
  • 财政年份:
    2023
  • 资助金额:
    $ 110.16万
  • 项目类别:
Uncovering the Role of RNA Modifications in the Paraspeckle
揭示 RNA 修饰在副斑斑中的作用
  • 批准号:
    10679290
  • 财政年份:
    2023
  • 资助金额:
    $ 110.16万
  • 项目类别:
Project 2: Ex Vivo Modeling and Analysis of Gastric Precancerous Lesions
项目2:胃癌前病变的离体建模与分析
  • 批准号:
    10715763
  • 财政年份:
    2023
  • 资助金额:
    $ 110.16万
  • 项目类别:
A platform to identify in vivo targets of covalent cancer drugs in 3D tissues
识别 3D 组织中共价癌症药物体内靶标的平台
  • 批准号:
    10714543
  • 财政年份:
    2023
  • 资助金额:
    $ 110.16万
  • 项目类别:
Characterizing HIV-1 reservoirs in the central nervous system
中枢神经系统中 HIV-1 储存库的特征
  • 批准号:
    10772268
  • 财政年份:
    2023
  • 资助金额:
    $ 110.16万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了