MICA: How does the pedunculopone nucleus influence treatment responses in Parkinson's disease, and can it be targeted for new treatment strategies

MICA:脚核如何影响帕金森病的治疗反应,是否可以作为新治疗策略的目标

基本信息

  • 批准号:
    MR/X005267/1
  • 负责人:
  • 金额:
    $ 104.31万
  • 依托单位:
  • 依托单位国家:
    英国
  • 项目类别:
    Research Grant
  • 财政年份:
    2023
  • 资助国家:
    英国
  • 起止时间:
    2023 至 无数据
  • 项目状态:
    未结题

项目摘要

Parkinson's disease (PD) is the second most common neurodegenerative disorder (second only to Alzheimer's disease). It is characterized by a progressive loss of motor ability over time. Partly due to the world's ageing population, PD is now one of the leading causes of disability worldwide. We know that PD is associated with a loss of dopamine cells in the brain. Treatment with dopamine replacement medications is highly effective in the early stages of the disease. Unfortunately however, over time, people become resistant to this medication, and develop new motor symptoms as a result. The symptoms that are particularly resistant to dopamine medications include balance impairment, and changes to the way people walk. As these complications progress, they impair quality of life, and eventually lead to falls and a loss of independence. We know that a small region of the brainstem, called the pedunculopontine nucleus (PPN), is involved in the control of balance and walking. We also know, primarily from work in animals, that the PPN can influence dopamine levels in the brain regions from which dopamine is lost in PD. However, we understand very little about the PPN and how it is connected with the rest of the brain in humans. As a result, therapies that have been developed to target the PPN have so far failed to meet our clinical expectations for improving balance and walking impairments. There are two recent technological advances that will help us to address this problem.First, new advances in how we image the brain have recently made it possible to examine the structure of the brain in more detail. Our study will apply these advances to investigate how the PPN might be targeted for new treatment strategies in PD. Second, we will take advantage of a new development in deep brain stimulation technology. Deep brain stimulation is a treatment for PD that applies electrical stimulation to the regions of brain that become disrupted by the disease. This is a highly effective treatment, but it does not work for everyone, and is extremely costly and invasive. When the deep brain stimulation electrodes are implanted in the brain however, researchers can record from the electrodes to understand more about how PD effects the brain. This approach has lead to the understanding that activity in the brain regions targeted by deep brain stimulation is aberrant in PD, and that this activity can be 'normalised' by dopamine medication. Until very recently these recordings could only be made around the time of the brain surgery, when people are generally immobile and fatigued. Now however, it is possible to record from the electrodes wirelessly, meaning people can fully recover from the surgery before taking part in research. As a result, we can now ask people to carry out some of the motor tasks that we know depend on the PPN, and record brain activity at the same time. By combining the information we can get about the brain from these two technologies when people are on and off their dopamine medications, we have the opportunity to examine how the PPN modifies how the brain uses dopamine to perform motor functions in the human for the first time. We can also examine how the PPN might participate in treatment responses to both dopamine replacement and deep brain stimulation. These findings will guide the development of new therapies that can target the PPN, and will enable us to personalise current treatment approaches to improve their effectiveness
帕金森氏病(PD)是第二常见的神经退行性疾病(仅次于阿尔茨海默氏病)。它的特征是随着时间的流逝,运动能力逐渐丧失。部分原因是世界上的人口老龄化,PD现在是全球残疾的主要原因之一。我们知道PD与大脑中多巴胺细胞的丧失有关。在疾病的早期阶段,用多巴胺替代药物治疗非常有效。但是,不幸的是,随着时间的流逝,人们对这种药物有抵抗力,因此产生了新的运动症状。对多巴胺药物特别抗药性的症状包括平衡损害以及人们行走方式的变化。随着这些并发症的发展,它们会损害生活质量,并最终导致跌倒和失去独立性。我们知道,脑干的一个小区域(称为pedunculopontine核(PPN))参与了平衡和行走的控制。我们还知道,主要来自动物的工作,PPN可以影响PD中多巴胺损失的大脑区域的多巴胺水平。但是,我们对PPN及其与人类的其他大脑的联系一无所知。结果,到目前为止,已经开发出针对PPN的疗法未能满足我们对改善平衡和步行障碍的临床期望。最近有两个技术进步将有助于我们解决这个问题。首先,在大脑最近如何更详细地检查大脑结构成为可能。我们的研究将应用这些进步来研究如何将PPN作为PD新治疗策略的目标。其次,我们将利用深脑刺激技术的新发展。深脑刺激是对PD的治疗方法,可将电刺激应用于被疾病破坏的大脑区域。这是一种非常有效的治疗方法,但对每个人都不起作用,并且非常昂贵和侵入性。但是,当深脑刺激电极被植入大脑时,研究人员可以从电极记录到电极,以更多地了解PD如何影响大脑。这种方法使人们了解到,由深脑刺激靶向的大脑区域的活性在PD中异常,并且可以通过多巴胺药物“标准化”这种活性。直到最近,这些录音只能在脑部手术时期左右进行,当时人们通常会陷入困境和疲劳。但是,现在可以无线从电极记录,这意味着人们可以在进行研究之前从手术中完全康复。结果,我们现在可以要求人们执行我们所知道的一些运动任务,这些任务取决于PPN,并同时记录大脑活动。通过结合信息,我们可以在人们开始和下种植多巴胺药物时从这两种技术中获得有关大脑的信息,我们有机会研究PPN如何修改大脑如何使用多巴胺第一次在人类中执行运动功能。我们还可以研究PPN如何参与对多巴胺替代和深脑刺激的治疗反应。这些发现将指导可以针对PPN的新疗法的开发,并使我们能够个性化当前治疗方法以提高其有效性

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Nicola Ray其他文献

Nicola Ray的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

相似国自然基金

最优化与权力如何共同影响社会“内卷”:基于认知过程模型的探讨
  • 批准号:
    32371124
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目
如何应对日趋严重的职场物化?基于员工、组织和数智技术的干预措施研究
  • 批准号:
    72372012
  • 批准年份:
    2023
  • 资助金额:
    40 万元
  • 项目类别:
    面上项目
电商平台个性化推荐信息如何影响消费者网购行为?基于田野实验的实证研究
  • 批准号:
    72302139
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
资本市场开放如何影响市场效率与系统性风险:基于ETF互联互通的准自然实验
  • 批准号:
    72302232
  • 批准年份:
    2023
  • 资助金额:
    30.00 万元
  • 项目类别:
    青年科学基金项目
菌根栖息地之间的连接性如何影响生态系统的功能
  • 批准号:
    32371721
  • 批准年份:
    2023
  • 资助金额:
    50 万元
  • 项目类别:
    面上项目

相似海外基金

How does the brain process conflicting information?
大脑如何处理相互矛盾的信息?
  • 批准号:
    DE240100614
  • 财政年份:
    2024
  • 资助金额:
    $ 104.31万
  • 项目类别:
    Discovery Early Career Researcher Award
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 104.31万
  • 项目类别:
    Training Grant
Does deformation lead to misinformation? How much can granitic rocks deform before accessory minerals are geochemically disturbed?
变形会导致错误信息吗?
  • 批准号:
    2342159
  • 财政年份:
    2024
  • 资助金额:
    $ 104.31万
  • 项目类别:
    Standard Grant
Does the functional load principle predict to how non-native English speakers assess the pronunciation intelligibility of Japanese non-native English speakers?
功能负荷原则是否可以预测非英语母语人士如何评估日语非英语母语人士的发音清晰度?
  • 批准号:
    24K04051
  • 财政年份:
    2024
  • 资助金额:
    $ 104.31万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Meiosis in Plasmodium: How does it work?
疟原虫减数分裂:它是如何运作的?
  • 批准号:
    BB/X014681/1
  • 财政年份:
    2024
  • 资助金额:
    $ 104.31万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了